Machine learning with Python cookbook practical solutions from preprocessing to deep learning

This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data...

Descripción completa

Detalles Bibliográficos
Otros Autores: Albon, Chris, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Beijing, [China] : O'Reilly 2018.
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630610306719
Tabla de Contenidos:
  • Vectors, matrices, and arrays
  • Loading data
  • Data wrangling
  • Handling numerical data
  • Handling categorical data
  • Handling text
  • Handling dates and times
  • Handling images
  • Dimensionalit reduction using feature extraction
  • Dimensionality reduction using feature selection
  • Model evaluation
  • Model selection
  • Linear regression
  • Trees and forests
  • K-nearest neighbors
  • Logistic regression
  • Support vector machines
  • Naive bayes
  • Clustering
  • Neural networks
  • Saving and loading trained models.