Machine Learning with Microsoft Technologies Selecting the Right Architecture and Tools for Your Project

Know how to do machine learning with Microsoft technologies. This book teaches you to do predictive, descriptive, and prescriptive analyses with Microsoft Power BI, Azure Data Lake, SQL Server, Stream Analytics, Azure Databricks, HD Insight, and more. The ability to analyze massive amounts of real-t...

Descripción completa

Detalles Bibliográficos
Autor principal: Etaati, Leila. author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berkeley, CA : Apress 2019.
Edición:1st ed. 2019.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630582106719
Tabla de Contenidos:
  • Part I: Getting Started
  • Chapter 1: Introduction to Machine Learning
  • Chapter 2: Introduction to R
  • Chapter 3: Introduction to Python
  • Chapter 4: R Visualization in Power BI
  • Part II: Machine Learning in R and Power BI
  • Chapter 5: Business Understanding
  • Chapter 6: Data Wrangling for Predictive Analysis
  • Chapter 7: Predictive Analysis in Power Query with R
  • Chapter 8: Descriptive Analysis in Power Query with R
  • Part III: Machine Learning SQL Server
  • Chapter 9: Using R with SQL Server 2016 and 2017
  • Chapter 10: Azure Databricks
  • Part IV: Machine Learning in Azure
  • Chapter 11: R in Azure Data Lake
  • Chapter 12: Azure Machine Learning Studio
  • Chapter 13: Machine Learning in Azure Stream Analytics
  • Chapter 14: Azure Machine Learning (ML) Workbench
  • Chapter 15: Machine Learning on HDInsight
  • Chapter 16: Data Science Virtual Machine and AI Framework
  • Chapter 17: Deep Learning Tools with Cognitive Toolkit (CNTK)
  • Part V: Data Science Virtual Machine
  • Chapter 18: Cognitive Service Toolkit
  • Chapter 19: Bot Framework
  • Chapter 20: Overview on Microsoft Machine Learning Tools.