Statistics for biomedical engineers and scientists how to visualize and analyze data

Statistics for Biomedical Engineers and Scientists: How to Analyze and Visualize Data provides an intuitive understanding of the concepts of basic statistics, with a focus on solving biomedical problems. Readers will learn how to understand the fundamental concepts of descriptive and inferential sta...

Descripción completa

Detalles Bibliográficos
Otros Autores: King, Andrew P., author (author), Eckersley, Robert J., author
Formato: Libro electrónico
Idioma:Inglés
Publicado: London, United Kingdom : Academic Press, an imprint of Elsevier [2019]
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630574606719
Tabla de Contenidos:
  • Front Cover
  • Statistics for Biomedical Engineers and Scientists
  • Copyright
  • Dedication
  • Contents
  • About the Authors
  • Preface
  • Aims and Motivation
  • Learning Objectives
  • How to Use This Book
  • Instructors
  • Students and Researchers
  • Web Site Resources
  • Contents and Organization
  • Acknowledgments
  • 1 Descriptive Statistics I: Univariate Statistics
  • 1.1 Introduction
  • 1.2 Types of Statistical Data
  • 1.3 Univariate Data Visualization
  • 1.3.1 Dotplot
  • 1.3.2 Histogram
  • 1.3.3 Bar Chart
  • 1.4 Measures of Central Tendency
  • 1.4.1 Mean
  • 1.4.2 Median
  • 1.4.3 Mode
  • 1.4.4 Which Measure of Central Tendency to Use?
  • 1.5 Measures of Variation
  • 1.5.1 Standard Deviation
  • 1.5.2 Interquartile Range
  • 1.5.3 Which Measure of Variation to Use?
  • 1.6 Visualizing Measures of Variation
  • 1.6.1 Visualizing Mean and Standard Deviation
  • 1.6.2 Visualizing Median and IQR: The Box Plot
  • 1.7 Summary
  • 1.8 Using MATLAB for Univariate Descriptive Statistics
  • 1.8.1 Visualization of Univariate Data
  • 1.8.2 Calculating Measures of Central Tendency
  • 1.8.3 Calculating Measures of Variation
  • 1.8.4 Visualizing Measures of Variation
  • 1.9 Exercises
  • 2 Descriptive Statistics II: Bivariate and Multivariate Statistics
  • 2.1 Introduction
  • 2.2 Visualizing Bivariate Statistics
  • 2.2.1 Two Categorical Variables
  • 2.2.2 Combining Categorical and Continuous Variables
  • 2.2.3 Two Continuous Variables
  • 2.2.4 Which Variable Should Go on Which Axis?
  • 2.2.5 General Comments on Choice of Visualization
  • 2.3 Measures of Variation
  • 2.3.1 Covariance
  • 2.3.2 Covariance Matrix
  • 2.4 Correlation
  • 2.4.1 Pearson's Correlation Coef cient
  • 2.4.2 Spearman's Rank Correlation Coef cient
  • 2.4.3 Which Measure of Correlation to Use?
  • 2.5 Regression Analysis
  • 2.5.1 Using the Best-Fit Line to Make Predictions.
  • 2.5.2 Fitting Nonlinear Models
  • 2.5.3 Fitting Higher-Order Polynomials
  • 2.6 Bland-Altman Analysis
  • 2.6.1 The Bland-Altman Plot
  • 2.7 Summary
  • 2.8 Descriptive Bivariate and Multivariate Statistics Using MATLAB
  • 2.8.1 Visualizing Bivariate Data
  • 2.8.2 Covariance
  • 2.8.3 Correlation
  • 2.8.4 Calculating Best-Fit Lines
  • 2.8.5 Bland-Altman Analysis
  • 2.9 Further Resources
  • 2.10 Exercises
  • 3 Descriptive Statistics III: ROC Analysis
  • 3.1 Introduction
  • 3.2 Notation
  • 3.2.1 Sensitivity and Speci city
  • 3.2.2 Positive and Negative Predictive Values
  • 3.2.3 Example Calculation of Se, Sp, PPV and NPV
  • 3.3 ROC Curves
  • 3.4 Summary
  • 3.5 Using MATLAB for ROC Analysis
  • 3.6 Further Resources
  • 3.7 Exercises
  • 4 Inferential Statistics I: Basic Concepts
  • 4.1 Introduction
  • 4.2 Notation
  • 4.3 Probability
  • 4.3.1 Probabilities of Single Events
  • 4.3.2 Probabilities of Multiple Events
  • 4.4 Probability Distributions
  • 4.4.1 The Normal Distribution
  • 4.5 Why the Normal Distribution Is so Important: The Central Limit Theorem
  • 4.6 Standard Error of the Mean
  • 4.7 Con dence Intervals of the Mean
  • 4.8 Summary
  • 4.9 Probability Distributions and Measures of Reliability Using MATLAB
  • 4.9.1 Probability Distributions
  • 4.9.2 Standard Error of the Mean
  • 4.9.3 Con dence Interval of the Mean
  • 4.10 Further Resources
  • 4.11 Exercises
  • 5 Inferential Statistics II: Parametric Hypothesis Testing
  • 5.1 Introduction
  • 5.2 Hypothesis Testing
  • 5.3 Types of Data for Hypothesis Tests
  • 5.4 The t-distribution and Student's t-test
  • 5.5 One-Sample Student's t-test
  • 5.6 Con dence Intervals for Small Samples
  • 5.7 Two Sample Student's t-test
  • 5.7.1 Paired Data
  • 5.7.2 Unpaired Data
  • 5.7.3 Paired vs. Unpaired t-test
  • 5.8 1-tailed vs. 2-tailed Tests
  • 5.9 Hypothesis Testing with Larger Sample Sizes: The z-test.
  • 5.10 Summary
  • 5.11 Parametric Hypothesis Testing Using MATLAB
  • 5.11.1 Student's t-test
  • 5.11.2 z-test
  • 5.11.3 The t-distribution
  • 5.12 Further Resources
  • 5.13 Exercises
  • 6 Inferential Statistics III: Nonparametric Hypothesis Testing
  • 6.1 Introduction
  • 6.2 Sign Test
  • 6.3 Wilcoxon Signed-Rank Test
  • 6.4 Mann-Whitney U Test
  • 6.5 Chi-Square Test
  • 6.5.1 One-Sample Chi-Square Test
  • 6.5.2 Two-Sample Chi-Square Test for Independence
  • 6.6 Summary
  • 6.7 Nonparametric Hypothesis Testing Using MATLAB
  • 6.7.1 Sign Test
  • 6.7.2 Wilcoxon Signed-Rank Test
  • 6.7.3 Mann-Whitney U Test
  • 6.7.4 Chi-Square Test
  • 6.8 Further Resources
  • 6.9 Exercises
  • 7 Inferential Statistics IV: Choosing a Hypothesis Test
  • 7.1 Introduction
  • 7.2 Visual Methods to Investigate Whether a Sample Fits a Normal Distribution
  • 7.2.1 Histograms
  • 7.2.2 Quantile-Quantile Plots
  • 7.3 Numerical Methods to Investigate Whether a Sample Fits a Normal Distribution
  • 7.3.1 Probability Plot Correlation Coef cient
  • 7.3.2 Skew Values
  • 7.3.3 z-values
  • 7.3.4 Shapiro-Wilk Test
  • 7.3.5 Chi-Square Test for Normality
  • 7.4 Should We Use a Parametric or Nonparametric Test?
  • 7.5 Does It Matter if We Use the Wrong Test?
  • 7.6 Summary
  • 7.7 Assessing Data Distributions Using MATLAB
  • 7.7.1 Visual Methods
  • 7.7.2 Numerical Methods
  • 7.8 Further Resources
  • 7.9 Exercises
  • 8 Inferential Statistics V: Multiple and Multivariate Hypothesis Testing
  • 8.1 Introduction
  • 8.2 Multiple Hypothesis Testing
  • 8.2.1 Bonferroni's Correction
  • 8.2.2 Analysis of Variance (ANOVA)
  • ANOVA With Unequal Sample Sizes
  • 8.3 Multivariate Hypothesis Testing
  • 8.3.1 Hotelling's T2 Test
  • Two Sample Hotelling's T2 Test
  • 8.3.2 Multivariate Analysis of Variance (MANOVA)
  • 8.4 Which Test Should We Use?
  • 8.5 Summary.
  • 8.6 Multiple and Multivariate Hypothesis Testing Using MATLAB
  • 8.6.1 Bonferroni's Correction
  • 8.6.2 ANOVA
  • 8.6.3 Hotelling's T2 Test
  • 8.6.4 MANOVA
  • 8.7 Further Resources
  • 8.8 Exercises
  • 9 Experimental Design and Sample Size Calculations
  • 9.1 Introduction
  • 9.2 Experimental and Observational Studies
  • 9.2.1 Observational Studies
  • 9.2.2 Experimental Studies
  • 9.2.3 Showing Cause-and-Effect
  • 9.3 Random and Systematic Error (Bias)
  • 9.4 Reducing Random and Systematic Errors
  • 9.4.1 Blocking (Matching) Test and Control Subjects
  • 9.4.2 Blinding
  • 9.4.3 Multiple Measurement
  • 9.4.4 Randomization
  • 9.5 Sample Size and Power Calculations
  • 9.5.1 Illustration of a Power Calculation for a Single Sample t-test
  • 9.5.2 Illustration of a Sample Size Calculation
  • 9.6 Summary
  • 9.7 Power and Sample Size Calculations Using MATLAB
  • 9.7.1 Sample Size Calculations
  • 9.7.2 Power Calculations
  • 9.8 Further Resources
  • 9.9 Exercises
  • 10 Statistical Shape Models
  • 10.1 Introduction
  • 10.2 SSMs and Dimensionality Reduction
  • 10.3 Forming an SSM
  • 10.3.1 Parameterize the Shape
  • 10.3.2 Align the Centroids
  • 10.3.3 Compute the Mean Shape Vector
  • 10.3.4 Compute the Covariance Matrix
  • 10.3.5 Compute the Eigenvectors and Eigenvalues
  • 10.4 Producing New Shapes From an SSM
  • 10.5 Biomedical Applications of SSMs
  • 10.6 Summary
  • 10.7 Statistical Shape Modeling Using MATLAB
  • 10.8 Further Resources
  • 10.9 Exercises
  • 11 MATLAB Case Study on Descriptive and Inferential Statistics
  • 11.1 Introduction
  • 11.2 Data
  • 11.3 Part A: Measuring Myocardium Thickness
  • 11.4 Part B: Intraobserver Variability
  • 11.5 Part C: Sample Analysis
  • 11.6 Summary
  • A Statistical Tables
  • References
  • Index
  • Back Cover.