Advanced R statistical programming and data models analysis, machine learning, and visualization
Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples us...
Autores principales: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Berkeley, CA :
Apress
2019.
|
Edición: | 1st ed. 2019. |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630537806719 |
Tabla de Contenidos:
- 1 Univariate Data Visualization
- 2 Multivariate Data Visualization
- 3 Generalized Linear Models 1
- 4 Generalized Linear Models 2
- 5 Generalized Additive Models
- 6 Machine Learning: Introduction
- 7 Machine Learning: Unsupervised
- 8 Machine Learning: Supervised
- 9 Missing Data
- 10 Generalized Linear Mixed Models: Introduction
- 11 Generalized Linear Mixed Models: Linear
- 12 Generalized Linear Mixed Models: Advanced
- 13 Modeling IIV
- Bibliography.