Systems engineering for aerospace a practical approach

Systems Engineering for Aerospace: A Practical Approach applies insights gained from systems engineering to real-world industry problems. The book describes how to measure and manage an aircraft program from start to finish. It helps readers determine input, process and output requirements, from pla...

Descripción completa

Detalles Bibliográficos
Otros Autores: Sheng, Richard, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: London, England : Academic Press 2019.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630535206719
Tabla de Contenidos:
  • Front Cover
  • Systems Engineering for Aerospace: A Practical Approach
  • Copyright
  • Dedication
  • Contents
  • Author Biography
  • Preface
  • Acknowledgments
  • Table of Terms
  • Chapter 1: Introduction
  • 1.1. Systems Engineering Definitions
  • 1.1.1. Systems Engineering: A Team Approach
  • 1.1.2. Systems Engineering Requires System Thinking
  • 1.1.3. Systems Engineering Is an Emerging Science
  • 1.1.4. Systems Engineering Is a Multidisciplinary Approach
  • 1.1.5. Systems Engineering Approach Has Achieved Global Recognition
  • 1.2. Systems Engineering Processes
  • 1.2.1. Systems Engineering Process Planning
  • 1.2.2. System Requirements Analysis
  • 1.2.3. Functional Analysis/Allocation
  • 1.2.4. System Synthesis
  • 1.2.5. System Analysis
  • 1.2.6. System Control
  • 1.3. Summary
  • Chapter 2: Systems engineering and integration
  • 2.1. Integrated Master Plan/Integrated Master Schedule
  • 2.2. Work Breakdown Structure and Product Breakdown Structure
  • 2.2.1. Work Breakdown Structure
  • 2.2.2. Product Breakdown Structure
  • 2.3. Integration Management (Execution)
  • 2.3.1. Program Scope Management
  • 2.3.2. Time Management
  • 2.3.3. Cost Management
  • 2.3.4. Quality Management
  • 2.3.5. Human Resources Management
  • 2.3.6. Communication Management
  • 2.3.7. Risk Management
  • 2.3.8. Procurement Management
  • 2.3.9. Formulas
  • 2.4. Summary
  • References
  • Chapter 3: Managing the plan and execute phases
  • 3.1. Managers Team Plan
  • 3.2. Managing Execution Strategy
  • 3.3. Summary
  • Chapter 4: Managing for high performance
  • 4.1. Managing Team Communication
  • 4.2. High-Performance Budget Management
  • 4.3. Organizational Breakdown Structure/Product Breakdown Structure/Work Breakdown Structure Integration
  • 4.4. Summary
  • Chapter 5: Integration Plan and Test Strategy
  • 5.1. Developmental/Unit Test and Integration
  • 5.1.1. Inputs.
  • 5.1.2. Process
  • 5.1.3. Outputs
  • 5.1.4. Milestone Reviews
  • 5.2. Subsystem Test and Integration
  • 5.2.1. Inputs
  • 5.2.2. Process
  • 5.2.3. Outputs
  • 5.2.4. Milestone Reviews
  • 5.3. Item Qualification Testing
  • 5.3.1. Inputs
  • 5.3.2. Process
  • 5.3.3. Outputs
  • 5.3.4. Milestone Reviews
  • 5.4. System Integration and Test
  • 5.4.1. Inputs
  • 5.4.2. Process
  • 5.4.3. Outputs
  • 5.4.4. Milestone Reviews
  • 5.5. Installation and Checkout Test
  • 5.5.1. Inputs
  • 5.5.2. Process
  • 5.5.3. Outputs
  • 5.5.4. Milestone Reviews
  • 5.6. System Detail Test and Evaluation (Flight Test)
  • 5.6.1. Inputs
  • 5.6.2. Process
  • 5.6.3. Outputs
  • 5.6.4. Milestone Reviews
  • 5.7. Operational Test and Evaluation
  • 5.7.1. Inputs
  • 5.7.2. Process
  • 5.7.3. Outputs
  • 5.7.4. Milestone Reviews
  • 5.8. Summary
  • Chapter 6: Managing People, Product, and Process (P3) implementation
  • 6.1. P3 Management Strategy
  • 6.1.1. Leadership
  • 6.1.2. Organizational Structure
  • 6.1.3. Total Quality Strategy
  • 6.1.4. Summary
  • 6.2. Trade Studies and Knowledge Management for Capability Building
  • 6.2.1. Trade Study Purpose and Example of a Case Study
  • 6.2.1.1. Purpose
  • 6.2.1.2. Background
  • 6.2.1.3. Scope of effort
  • 6.2.1.3.1. RDBMS data incorporation capability
  • 6.2.1.3.1.1. RDBMS
  • 6.2.1.3.2. RDBMS maintenance capability
  • 6.2.1.3.2.1. RDBMS
  • 6.2.2. Functional and Technical Design Requirements
  • 6.2.2.1. Functional requirements
  • 6.2.2.2. Technical design requirements
  • 6.2.3. RDBMS Evaluation
  • 6.2.3.1. RDBMS suppliers
  • 6.2.3.2. RDBMS selection criteria
  • 6.2.3.2.1. High availability
  • 6.2.3.2.2. Vendor stability
  • 6.2.3.2.3. Support record
  • 6.2.3.2.4. Portability
  • 6.2.3.2.5. Interface friendliness
  • 6.2.3.2.6. Access security/integrity
  • 6.2.3.2.7. User programming
  • 6.2.3.3. RDBMS analysis results
  • 6.2.4. RDBMS Conclusion.
  • 6.3. Risk Management and Its Process
  • 6.3.1. Introduction
  • 6.3.1.1. Purpose
  • 6.3.1.2. Objectives
  • 6.3.1.3. Risk management scope
  • 6.3.1.4. Background
  • 6.3.1.5. Supporting products
  • 6.3.2. Roles and Responsibilities
  • 6.3.2.1. Roles and responsibilities
  • 6.3.2.2. Support infrastructure tools
  • 6.3.2.3. Training
  • 6.3.3. Risk Management Process
  • 6.3.3.1. Identify
  • 6.3.3.2. Analyze
  • 6.3.3.2.1. Probability of occurrence
  • 6.3.3.2.2. Probability of impact
  • 6.3.3.2.3. Risk factor
  • 6.3.3.3. Plan response
  • 6.3.3.4. Monitor/control
  • 6.3.3.4.1. Communication
  • 6.3.3.4.2. Reporting
  • 6.3.3.4.3. Performance measurement
  • 6.3.3.4.4. Continual process improvement
  • 6.3.3.4.5. Audit
  • 6.4. Supplier Management
  • 6.4.1. Supplier Management Introduction
  • 6.4.2. Supplier Performance Measurement Rating System
  • 6.4.3. Summaries
  • 6.5. Configuration Management (CM)
  • 6.5.1. CM Definition
  • 6.5.2. CM Planning and Execution
  • 6.5.3. Configuration Identification
  • 6.5.4. Configuration Change and Variance Control
  • 6.5.5. Configuration Status Accounting
  • 6.5.6. Configuration Verification to Establish and Maintain Consistency of That Product's Performance, Function, and Phys ...
  • 6.5.7. CM Purpose
  • 6.6. Summary
  • References
  • Chapter 7: Systems engineering fundamentals
  • 7.1. Aerodynamics
  • 7.2. Airworthiness Certification
  • 7.2.1. Overview
  • 7.2.2. Changes to Type Design
  • 7.2.3. Defining Major and Minor Changes
  • 7.2.4. Major Change
  • 7.2.5. Minor Change
  • 7.2.6. Appreciable-Derived Definition for TC Purposes
  • 7.2.7. Change Approvals
  • 7.2.8. Approvals for Minor Change
  • 7.2.9. Type Design Changes by Persons Other Than the Type Certificate Holder
  • 7.2.10. Supplemental Type Certificates
  • 7.2.11. Foreign Adoption of FAA Regulations
  • 7.2.12. Joint Airworthiness Requirements.
  • 7.2.13. Other Airworthiness Requirements
  • 7.2.14. Inspections-Airworthiness vs Conformity
  • 7.2.15. Conformity Inspections
  • 7.2.16. Airworthiness Inspections
  • 7.2.17. Standard Airworthiness Certificate
  • 7.2.18. Special Airworthiness Certificates
  • 7.2.19. Experimental
  • 7.2.20. Airworthiness Directives
  • 7.3. Design Considerations and Testing
  • 7.3.1. Installation and Design Consideration
  • 7.3.1.1. Vibration and shock
  • 7.3.1.2. Temperature
  • 7.3.2. Some Design Solutions
  • 7.3.3. Humidity
  • 7.3.3.1. Hermetic sealing
  • 7.3.3.2. Conformal coating
  • 7.3.3.3. Water drains
  • 7.3.4. Vibration and Shock
  • 7.3.5. Temperature
  • 7.3.6. Humidity
  • 7.3.7. Witnessing Tests
  • 7.3.8. What to Do if the LRU Fails
  • 7.3.9. Certification Maintenance Requirement
  • 7.3.10. Qualification by Similarity
  • 7.3.11. Other Challenges
  • 7.3.11.1. Environmental stress screening
  • 7.3.11.2. Electronic cooling
  • 7.3.12. Rain in the Plane
  • 7.3.13. Air Conditioning Entrained Water
  • 7.3.14. On the Ground
  • 7.3.15. In-Flight
  • 7.4. Design for Safety
  • 7.4.1. Safety Through Integrity
  • 7.4.2. Aircraft Expectations
  • 7.4.3. Design for Safety vs Cost-Effectiveness
  • 7.4.4. Safety-An Integral Part of the Design Approach
  • 7.4.5. Assessing Potential Failure
  • 7.4.6. Resistance to Design for Safety
  • 7.4.7. Probabilistic Aspects of Design Safety
  • 7.4.8. The Reality of Probability Clashes With Intuition
  • 7.4.9. Safety vs Reliability
  • 7.4.10. Hazards and Risk
  • 7.4.11. Organizational Support
  • 7.4.12. Safer Systems and Products
  • 7.4.13. Design Order of Precedence
  • 7.4.14. Fail-Safe Design Concept
  • 7.4.15. Series or Parallel Architecture
  • 7.4.16. Monitors
  • 7.4.17. Design for Safety Tools
  • 7.4.18. Design for Safety Goals
  • 7.4.19. Summary
  • 7.5. Electrical and Mechanical Installations
  • 7.5.1. Electrical Equipment.
  • 7.5.1.1. Avionics Compartment
  • 7.5.1.2. Center Accessory Compartment
  • 7.5.1.2.1. Rack installation design needs
  • 7.5.1.2.2. LRU sizing
  • 7.5.1.2.3. Equipment cooling
  • 7.5.1.2.4. Universal arrangement
  • 7.5.1.2.5. Equipment location-Questions to ask
  • 7.5.1.3. Flight Compartment
  • 7.5.1.3.1. Pedestal
  • 7.5.1.3.2. Overhead Circuit Breakers
  • 7.5.1.3.3. Forward Overhead Panel
  • 7.5.1.3.4. Equipment Installation and Environmental Factors
  • 7.5.2. Electrical Wiring
  • 7.5.2.1. Overview
  • 7.5.2.2. Accessibility
  • 7.5.2.3. Safety
  • 7.5.2.4. Wire separation categories
  • 7.5.2.5. System wiring separation
  • 7.5.2.6. Installation diversity
  • 7.5.2.7. Power feeders
  • 7.5.2.8. Environmental conditions
  • 7.5.2.9. Lightning protection
  • 7.5.2.10. Hazardous wiring installation areas
  • 7.5.2.11. Wire assembly development
  • 7.5.2.12. Electronic design integration (EDI)
  • 7.5.3. Mechanical Design and Installation
  • 7.5.3.1. Overview
  • 7.5.3.2. Flight controls
  • 7.5.3.3. Fly-by-wire
  • 7.5.3.4. Design requirements
  • 7.5.3.5. Mechanisms
  • 7.5.3.6. Interfacing considerations
  • 7.5.3.7. Hydraulics
  • 7.5.3.8. Design requirements
  • 7.5.3.9. Detail design considerations
  • 7.5.3.9.1. Hydraulic pumps
  • 7.5.3.9.2. Reservoirs
  • 7.5.3.9.3. Accumulators
  • 7.5.3.9.4. Valves
  • 7.5.3.10. Output devices
  • 7.5.3.10.1. Hydraulic piping
  • 7.5.3.11. Interfacing system considerations
  • 7.5.3.12. Landing gear
  • 7.5.3.13. Design requirements
  • 7.5.3.14. Detail design considerations
  • 7.5.3.15. Interfacing systems considerations
  • 7.5.3.16. Water and waste
  • 7.5.3.17. Design requirements and considerations
  • 7.5.3.17.1. Potable water
  • 7.5.3.17.2. Waste water
  • 7.5.3.18. Interfacing system design
  • 7.6. Electrical Power Systems
  • 7.6.1. Introduction
  • 7.6.2. Power Sources and Distribution Structure
  • 7.6.3. Types of Power Generation.
  • 7.6.4. Emergency Power Generation.