Deep learning through sparse and low-rank modeling

Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models—those that emphasize problem-specific Interpretability—with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the tool...

Descripción completa

Detalles Bibliográficos
Otros Autores: Wang, Zhangyang, author (author), Wang, Zhangyang, editor (editor), Raymond, Yun, editor, Huang, Thomas S., editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: London : Academic Press [2019]
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630528206719
Tabla de Contenidos:
  • Front Cover
  • Deep Learning Through Sparse and Low-Rank Modeling
  • Copyright
  • Contents
  • Contributors
  • About the Editors
  • Preface
  • Acknowledgments
  • 1 Introduction
  • 1.1 Basics of Deep Learning
  • 1.2 Basics of Sparsity and Low-Rankness
  • 1.3 Connecting Deep Learning to Sparsity and Low-Rankness
  • 1.4 Organization
  • References
  • 2 Bi-Level Sparse Coding: A Hyperspectral Image Classi cation Example
  • 2.1 Introduction
  • 2.2 Formulation and Algorithm
  • 2.2.1 Notations
  • 2.2.2 Joint Feature Extraction and Classi cation
  • 2.2.2.1 Sparse Coding for Feature Extraction
  • 2.2.2.2 Task-Driven Functions for Classi cation
  • 2.2.2.3 Spatial Laplacian Regularization
  • 2.2.3 Bi-level Optimization Formulation
  • 2.2.4 Algorithm
  • 2.2.4.1 Stochastic Gradient Descent
  • 2.2.4.2 Sparse Reconstruction
  • 2.3 Experiments
  • 2.3.1 Classi cation Performance on AVIRIS Indiana Pines Data
  • 2.3.2 Classi cation Performance on AVIRIS Salinas Data
  • 2.3.3 Classi cation Performance on University of Pavia Data
  • 2.4 Conclusion
  • 2.5 Appendix
  • References
  • 3 Deep l0 Encoders: A Model Unfolding Example
  • 3.1 Introduction
  • 3.2 Related Work
  • 3.2.1 l0- and l1-Based Sparse Approximations
  • 3.2.2 Network Implementation of l1-Approximation
  • 3.3 Deep l0 Encoders
  • 3.3.1 Deep l0-Regularized Encoder
  • 3.3.2 Deep M-Sparse l0 Encoder
  • 3.3.3 Theoretical Properties
  • 3.4 Task-Driven Optimization
  • 3.5 Experiment
  • 3.5.1 Implementation
  • 3.5.2 Simulation on l0 Sparse Approximation
  • 3.5.3 Applications on Classi cation
  • 3.5.4 Applications on Clustering
  • 3.6 Conclusions and Discussions on Theoretical Properties
  • References
  • 4 Single Image Super-Resolution: From Sparse Coding to Deep Learning
  • 4.1 Robust Single Image Super-Resolution via Deep Networks with Sparse Prior
  • 4.1.1 Introduction
  • 4.1.2 Related Work.
  • 4.1.3 Sparse Coding Based Network for Image SR
  • 4.1.3.1 Image SR Using Sparse Coding
  • 4.1.3.2 Network Implementation of Sparse Coding
  • 4.1.3.3 Network Architecture of SCN
  • 4.1.3.4 Advantages over Previous Models
  • 4.1.4 Network Cascade for Scalable SR
  • 4.1.4.1 Network Cascade for SR of a Fixed Scaling Factor
  • 4.1.4.2 Network Cascade for Scalable SR
  • 4.1.4.3 Training Cascade of Networks
  • 4.1.5 Robust SR for Real Scenarios
  • 4.1.5.1 Data-Driven SR by Fine-Tuning
  • 4.1.5.2 Iterative SR with Regularization
  • Blurry Image Upscaling
  • Noisy Image Upscaling
  • 4.1.6 Implementation Details
  • 4.1.7 Experiments
  • 4.1.7.1 Algorithm Analysis
  • 4.1.7.2 Comparison with State-of-the-Art
  • 4.1.7.3 Robustness to Real SR Scenarios
  • Data-Driven SR by Fine-Tuning
  • Regularized Iterative SR
  • 4.1.8 Subjective Evaluation
  • 4.1.9 Conclusion and Future Work
  • 4.2 Learning a Mixture of Deep Networks for Single Image Super-Resolution
  • 4.2.1 Introduction
  • 4.2.2 The Proposed Method
  • 4.2.3 Implementation Details
  • 4.2.4 Experimental Results
  • 4.2.4.1 Network Architecture Analysis
  • 4.2.4.2 Comparison with State-of-the-Art
  • 4.2.4.3 Runtime Analysis
  • 4.2.5 Conclusion and Future Work
  • References
  • 5 From Bi-Level Sparse Clustering to Deep Clustering
  • 5.1 A Joint Optimization Framework of Sparse Coding and Discriminative Clustering
  • 5.1.1 Introduction
  • 5.1.2 Model Formulation
  • 5.1.2.1 Sparse Coding with Graph Regularization
  • 5.1.2.2 Bi-level Optimization Formulation
  • 5.1.3 Clustering-Oriented Cost Functions
  • 5.1.3.1 Entropy-Minimization Loss
  • 5.1.3.2 Maximum-Margin Loss
  • 5.1.4 Experiments
  • 5.1.4.1 Datasets
  • 5.1.4.2 Evaluation Metrics
  • 5.1.4.3 Comparison Experiments
  • Comparison Methods
  • Comparison Analysis
  • Varying the Number of Clusters
  • Initialization and Parameters
  • 5.1.5 Conclusion
  • 5.1.6 Appendix.
  • 5.2 Learning a Task-Speci c Deep Architecture for Clustering
  • 5.2.1 Introduction
  • 5.2.2 Related Work
  • 5.2.2.1 Sparse Coding for Clustering
  • 5.2.2.2 Deep Learning for Clustering
  • 5.2.3 Model Formulation
  • 5.2.3.1 TAGnet: Task-speci c And Graph-regularized Network
  • 5.2.3.2 Clustering-Oriented Loss Functions
  • 5.2.3.3 Connections to Existing Models
  • 5.2.4 A Deeper Look: Hierarchical Clustering by DTAGnet
  • 5.2.5 Experiment Results
  • 5.2.5.1 Datasets and Measurements
  • 5.2.5.2 Experiment Settings
  • 5.2.5.3 Comparison Experiments and Analysis
  • Bene ts of the Task-speci c Deep Architecture
  • Effects of Graph Regularization
  • Scalability and Robustness
  • 5.2.5.4 Hierarchical Clustering on CMU MultiPIE
  • 5.2.6 Conclusion
  • References
  • 6 Signal Processing
  • 6.1 Deeply Optimized Compressive Sensing
  • 6.1.1 Background
  • 6.1.2 An End-to-End Optimization Model of CS
  • 6.1.3 DOCS: Feed-Forward and Jointly Optimized CS
  • Complexity
  • Related Work
  • 6.1.4 Experiments
  • Settings
  • Simulation
  • Reconstruction Error
  • Ef ciency
  • Experiments on Image Reconstruction
  • 6.1.5 Conclusion
  • 6.2 Deep Learning for Speech Denoising
  • 6.2.1 Introduction
  • 6.2.2 Neural Networks for Spectral Denoising
  • 6.2.2.1 Network Architecture
  • 6.2.2.2 Implementation Details
  • Activation Function
  • Cost Function
  • Training Strategy
  • 6.2.2.3 Extracting Denoised Signals
  • 6.2.2.4 Dealing with Gain
  • 6.2.3 Experimental Results
  • 6.2.3.1 Experimental Setup
  • 6.2.3.2 Network Structure Analysis
  • 6.2.3.3 Analysis of Robustness to Variations
  • 6.2.3.4 Comparison with NMF
  • 6.2.4 Conclusion and Future Work
  • References
  • 7 Dimensionality Reduction
  • 7.1 Marginalized Denoising Dictionary Learning with Locality Constraint
  • 7.1.1 Introduction
  • 7.1.2 Related Works
  • 7.1.2.1 Dictionary Learning
  • 7.1.2.2 Auto-encoder.
  • 7.1.3 Marginalized Denoising Dictionary Learning with Locality Constraint
  • 7.1.3.1 Preliminaries and Motivations
  • 7.1.3.2 LC-LRD Revisited
  • 7.1.3.3 Marginalized Denoising Auto-encoder (mDA)
  • 7.1.3.4 Proposed MDDL Model
  • 7.1.3.5 Optimization
  • 7.1.3.6 Classi cation Based on MDDL
  • 7.1.4 Experiments
  • 7.1.4.1 Experimental Settings
  • 7.1.4.2 Face Recognition
  • 7.1.4.3 Object Recognition
  • 7.1.4.4 Digits Recognition
  • 7.1.5 Conclusion
  • 7.1.6 Future Works
  • 7.2 Learning a Deep l8 Encoder for Hashing
  • 7.2.1 Introduction
  • 7.2.1.1 Problem De nition and Background
  • 7.2.1.2 Related Work
  • 7.2.2 ADMM Algorithm
  • 7.2.3 Deep l8 Encoder
  • 7.2.4 Deep l8 Siamese Network for Hashing
  • 7.2.5 Experiments in Image Hashing
  • 7.2.6 Conclusion
  • References
  • 8 Action Recognition
  • 8.1 Deeply Learned View-Invariant Features for Cross-View Action Recognition
  • 8.1.1 Introduction
  • 8.1.2 Related Work
  • 8.1.3 Deeply Learned View-Invariant Features
  • 8.1.3.1 Sample-Af nity Matrix (SAM)
  • 8.1.3.2 Preliminaries on Autoencoders
  • 8.1.3.3 Single-Layer Feature Learning
  • 8.1.3.4 Learning
  • 8.1.3.5 Deep Architecture
  • 8.1.4 Experiments
  • 8.1.4.1 IXMAS Dataset
  • One-to-One Cross-view Action Recognition
  • Many-to-One Cross-view Action Recognition
  • 8.1.4.2 Daily and Sports Activities Data Set
  • Many-to-One Cross-view Action Classi cation
  • 8.2 Hybrid Neural Network for Action Recognition from Depth Cameras
  • 8.2.1 Introduction
  • 8.2.2 Related Work
  • 8.2.3 Hybrid Convolutional-Recursive Neural Networks
  • 8.2.3.1 Architecture Overview
  • 8.2.3.2 3D Convolutional Neural Networks
  • 8.2.3.3 3D Recursive Neural Networks
  • 8.2.3.4 Multiple 3D-RNNs
  • 8.2.3.5 Model Learning
  • 8.2.3.6 Classi cation
  • 8.2.4 Experiments
  • 8.2.4.1 MSR-Gesture3D Dataset
  • 8.2.4.2 MSR-Action3D Dataset
  • 8.3 Summary
  • References.
  • 9 Style Recognition and Kinship Understanding
  • 9.1 Style Classi cation by Deep Learning
  • 9.1.1 Background
  • 9.1.2 Preliminary Knowledge of Stacked Autoencoder (SAE)
  • 9.1.3 Style Centralizing Autoencoder
  • 9.1.3.1 One Layer Basic SCAE
  • 9.1.3.2 Stacked SCAE (SSCAE)
  • 9.1.3.3 Visualization of Encoded Feature in SCAE
  • 9.1.3.4 Geometric Interpretation of SCAE
  • 9.1.4 Consensus Style Centralizing Autoencoder
  • 9.1.4.1 Low-Rank Constraint on the Model
  • 9.1.4.2 Group Sparsity Constraint on the Model
  • 9.1.4.3 Rank-Constrained Group Sparsity Autoencoder
  • 9.1.4.4 Ef cient Solutions for RCGSAE
  • 9.1.4.5 Progressive CSCAE
  • 9.1.5 Experiments
  • 9.1.5.1 Dataset
  • 9.1.5.2 Compared Methods
  • 9.1.5.3 Experimental Results
  • 9.2 Visual Kinship Understanding
  • 9.2.1 Background
  • 9.2.2 Related Work
  • 9.2.3 Family Faces
  • 9.2.4 Regularized Parallel Autoencoders
  • 9.2.4.1 Problem Formulation
  • 9.2.4.2 Low-Rank Reframing
  • 9.2.4.3 Solution
  • 9.2.5 Experimental Results
  • 9.2.5.1 Kinship Veri cation
  • 9.2.5.2 Family Membership Recognition
  • 9.3 Research Challenges and Future Works
  • References
  • 10 Image Dehazing: Improved Techniques
  • 10.1 Introduction
  • 10.2 Review and Task Description
  • 10.2.1 Haze Modeling and Dehazing Approaches
  • 10.2.2 RESIDE Dataset
  • 10.3 Task 1: Dehazing as Restoration
  • 10.4 Task 2: Dehazing for Detection
  • 10.4.1 Solution Set 1: Enhancing Dehazing and/or Detection Modules in the Cascade
  • 10.4.2 Solution Set 2: Domain-Adaptive Mask-RCNN
  • Experiments
  • 10.5 Conclusion
  • References
  • 11 Biomedical Image Analytics: Automated Lung Cancer Diagnosis
  • 11.1 Introduction
  • 11.2 Related Work
  • 11.3 Methodology
  • Metrics for Scoring Images
  • 11.4 Experiments
  • 11.5 Conclusion
  • Acknowledgments
  • References
  • Index
  • Back Cover.