Machine Learning Using R With Time Series and Industry-Based Use Cases in R
Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avo...
Autores principales: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Berkeley, CA :
Apress
2019.
|
Edición: | 2nd ed. 2019. |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630512706719 |
Tabla de Contenidos:
- Chapter 1: Introduction to Machine Learning
- Chapter 2: Data Exploration and Preparation
- Chapter 3: Sampling and Resampling Techniques
- Chapter 4: Visualization of Data
- Chapter 5: Feature Engineering
- Chapter 6: Machine Learning Models: Theory and Practice
- Chapter 7: Machine Learning Model Evaluation
- Chapter 8: Model Performance Improvement
- Chapter 9: Time Series Modelling
- Chapter 10: Scalable Machine Learning and related technology
- Chapter 11: Introduction to Deep Learning Models using Keras and TensorFlow.