Learning Spark SQL architect streaming analytics and machine learning solutions

Design, implement, and deliver successful streaming applications, machine learning pipelines and graph applications using Spark SQL API About This Book Learn about the design and implementation of streaming applications, machine learning pipelines, deep learning, and large-scale graph processing app...

Descripción completa

Detalles Bibliográficos
Otros Autores: Sarkar, Aurobindo, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Birmingham, [England] ; Mumbai, [India] : Packt Publishing 2017.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630503006719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Credits
  • About the Author
  • About the Reviewer
  • www.PacktPub.com
  • Customer Feedback
  • Table of Contents
  • Preface
  • Chapter 1: Getting Started with Spark SQL
  • What is Spark SQL?
  • Introducing SparkSession
  • Understanding Spark SQL concepts
  • Understanding Resilient Distributed Datasets (RDDs)
  • Understanding DataFrames and Datasets
  • Understanding the Catalyst optimizer
  • Understanding Catalyst optimizations
  • Understanding Catalyst transformations
  • Introducing Project Tungsten
  • Using Spark SQL in streaming applications
  • Understanding Structured Streaming internals
  • Summary
  • Chapter 2: Using Spark SQL for Processing Structured and Semistructured Data
  • Understanding data sources in Spark applications
  • Selecting Spark data sources
  • Using Spark with relational databases
  • Using Spark with MongoDB (NoSQL database)
  • Using Spark with JSON data
  • Using Spark with Avro files
  • Using Spark with Parquet files
  • Defining and using custom data sources in Spark
  • Summary
  • Chapter 3: Using Spark SQL for Data Exploration
  • Introducing Exploratory Data Analysis (EDA)
  • Using Spark SQL for basic data analysis
  • Identifying missing data
  • Computing basic statistics
  • Identifying data outliers
  • Visualizing data with Apache Zeppelin
  • Sampling data with Spark SQL APIs
  • Sampling with the DataFrame/Dataset API
  • Sampling with the RDD API
  • Using Spark SQL for creating pivot tables
  • Summary
  • Chapter 4: Using Spark SQL for Data Munging
  • Introducing data munging
  • Exploring data munging techniques
  • Pre-processing of the&amp
  • #160
  • household electric consumption Dataset
  • Computing basic statistics and aggregations
  • Augmenting the Dataset
  • Executing other miscellaneous processing steps
  • Pre-processing of&amp
  • #160
  • the weather Dataset.
  • Analyzing missing data
  • Combining data using a JOIN operation
  • Munging textual data
  • Processing multiple input data files
  • Removing stop words
  • Munging time series data
  • Pre-processing of the&amp
  • #160
  • time-series Dataset
  • Processing date fields
  • Persisting and loading data
  • Defining a date-time index
  • Using the&amp
  • #160
  • &amp
  • #160
  • TimeSeriesRDD&amp
  • #160
  • object
  • Handling missing time-series data
  • Computing basic statistics
  • Dealing with variable length records
  • Converting variable-length records to fixed-length records
  • Extracting data from "messy" columns
  • Preparing data for machine learning
  • Pre-processing data for machine learning
  • Creating and running a machine learning pipeline
  • Summary
  • Chapter 5: Using Spark SQL in Streaming Applications
  • Introducing streaming data applications
  • Building Spark streaming applications
  • Implementing sliding window-based functionality
  • Joining a streaming Dataset with a static Dataset
  • Using the Dataset API in Structured Streaming
  • Using output sinks
  • Using the Foreach Sink for arbitrary computations on output
  • Using the Memory Sink to save output to a table
  • Using the File Sink to save output to a partitioned table
  • Monitoring streaming queries
  • Using Kafka with Spark Structured Streaming
  • Introducing Kafka concepts
  • Introducing ZooKeeper concepts
  • Introducing Kafka-Spark integration
  • Introducing Kafka-Spark Structured Streaming
  • Writing a receiver for a custom data source
  • Summary
  • Chapter 6: Using Spark SQL in Machine Learning Applications
  • Introducing machine learning applications
  • Understanding Spark ML pipelines and their components
  • Understanding the steps in a pipeline application development process
  • Introducing feature engineering
  • Creating new features from raw data.
  • Estimating the importance of a feature
  • Understanding dimensionality reduction
  • Deriving good features
  • Implementing a Spark ML classification model
  • Exploring the diabetes Dataset
  • Pre-processing the data
  • Building the Spark ML pipeline
  • Using StringIndexer for indexing categorical features and labels
  • Using VectorAssembler for assembling features into one column
  • Using a Spark ML classifier
  • Creating a Spark ML pipeline
  • Creating the training and test Datasets
  • Making predictions using the PipelineModel
  • Selecting the best model
  • Changing the ML algorithm in the pipeline
  • Introducing Spark ML tools and utilities
  • Using Principal Component Analysis to select features
  • Using encoders
  • Using Bucketizer
  • Using VectorSlicer
  • Using Chi-squared selector
  • Using a Normalizer
  • Retrieving our original labels
  • Implementing a Spark ML clustering model
  • Summary
  • Chapter 7: Using Spark SQL in Graph Applications
  • Introducing large-scale graph applications
  • Exploring graphs using GraphFrames
  • Constructing a GraphFrame
  • Basic graph queries and operations
  • Motif analysis using GraphFrames
  • Processing subgraphs
  • Applying graph algorithms
  • Saving and loading GraphFrames
  • Analyzing JSON input modeled as a graph&amp
  • #160
  • Processing graphs containing multiple types of relationships
  • Understanding GraphFrame internals
  • Viewing GraphFrame physical execution plan
  • Understanding partitioning in GraphFrames
  • Summary
  • Chapter 8: Using Spark SQL with SparkR
  • Introducing SparkR
  • Understanding the SparkR architecture
  • Understanding SparkR DataFrames
  • Using SparkR for EDA and data munging tasks
  • Reading and writing Spark DataFrames
  • Exploring structure and contents of Spark DataFrames
  • Running basic operations on Spark DataFrames
  • Executing SQL statements on Spark DataFrames.
  • Merging SparkR DataFrames
  • Using User Defined Functions (UDFs)
  • Using SparkR for computing summary statistics
  • Using SparkR for data visualization
  • Visualizing data on a map
  • Visualizing graph nodes and edges
  • Using SparkR for machine learning
  • Summary
  • Chapter 9: Developing Applications with Spark SQL
  • Introducing Spark SQL applications
  • Understanding text analysis applications
  • Using Spark SQL for textual analysis
  • Preprocessing textual data
  • Computing readability
  • Using word lists
  • Creating data preprocessing pipelines
  • Understanding themes in document corpuses
  • Using Naive Bayes classifiers
  • Developing a machine learning application
  • Summary
  • Chapter 10: Using Spark SQL in Deep Learning Applications
  • Introducing neural networks
  • Understanding deep learning
  • Understanding representation learning
  • Understanding stochastic gradient descent
  • Introducing deep learning in Spark
  • Introducing CaffeOnSpark
  • Introducing DL4J
  • Introducing TensorFrames
  • Working with BigDL
  • Tuning hyperparameters of deep learning models
  • Introducing deep learning pipelines
  • Understanding Supervised learning
  • Understanding convolutional neural networks
  • Using neural networks for text classification
  • Using deep neural networks for language processing
  • Understanding Recurrent Neural Networks
  • Introducing autoencoders
  • Summary
  • Chapter 11: Tuning Spark SQL Components for Performance
  • Introducing performance tuning in Spark SQL
  • Understanding DataFrame/Dataset APIs
  • Optimizing data serialization
  • Understanding Catalyst optimizations
  • Understanding the Dataset/DataFrame API
  • Understanding Catalyst transformations
  • Visualizing Spark application execution
  • Exploring Spark application execution metrics
  • Using external tools for performance tuning
  • Cost-based optimizer in Apache Spark 2.2.
  • Understanding the&amp
  • #160
  • CBO statistics collection
  • Statistics collection functions
  • Filter operator
  • Join operator
  • Build side selection
  • Understanding multi-way JOIN ordering optimization
  • Understanding performance improvements using whole-stage code generation
  • Summary
  • Chapter 12: Spark SQL in Large-Scale Application Architectures
  • Understanding Spark-based application architectures
  • Using Apache Spark for batch processing
  • Using Apache Spark for stream processing
  • Understanding the Lambda architecture
  • Understanding the Kappa Architecture
  • Design considerations for building scalable stream processing applications
  • Building robust ETL pipelines using Spark SQL
  • Choosing appropriate data formats
  • Transforming data in ETL pipelines
  • Addressing errors in ETL pipelines
  • Implementing a scalable monitoring solution
  • Deploying Spark machine learning pipelines
  • Understanding the challenges in typical ML deployment environments
  • Understanding types of model scoring architectures
  • Using cluster managers
  • Summary
  • Index.