High performance polymers and their nanocomposites

High Performance Polymers and Their Nanocomposites summarizes many of the recent research accomplishments in the area of high performance polymers, such as: high performance polymers-based nanocomposites, liquid crystal polymers, polyamide 4, 6, polyamideimide, polyacrylamide, polyacrylamide-based c...

Descripción completa

Detalles Bibliográficos
Otros Autores: P. M., Visakh, editor (editor), A. O., Semkin, editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : Scrivener Publishing, Wiley [2019]
Edición:1st edition
Colección:THEi Wiley ebooks.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630488706719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • 1 High-Performance Polymer Nanocomposites and Their Applications: State of Art and New Challenges
  • 1.1 Liquid Crystal Polymers
  • 1.2 Polyamide 4, 6, (PA4,6)
  • 1.3 Polyacrylamide
  • 1.4 Effect of Nanostructured Polyhedral Oligomeric Silsesquioxone on High Performance Poly(urethane-Imide)
  • 1.5 Thermoplastic Polyimide
  • 1.6 Performance Properties and Applications of Polytetrafluoroethylene (PTFE)
  • 1.7 Advances in High-Performance Polymers Bearing Phthalazinone Moieties
  • 1.8 Poly(ethylene Terephthalate)-PET and Poly(ethylene Naphthalate)-PEN
  • 1.9 High-Performance Oil Resistant Blends of Ethylene Propylene Diene Monomer (EPDM) and Epoxydized Natural Rubber (ENR)
  • 1.10 High Performance Unsaturated Polyester/ f-MWCNTs Nanocomposites Induced by F-Graphene Nanoplatelets
  • References
  • 2 Liquid Crystal Polymers
  • 2.1 Introduction and History
  • 2.2 Polymerization
  • 2.2.1 Synthesis of Lyotropic LC Polymers
  • 2.2.2 Synthesis of Thermotropic LC Polymers
  • 2.3 Properties
  • 2.3.1 Rheology
  • 2.3.2 Dielectric Behavior
  • 2.3.3 Magnetic Properties
  • 2.3.4 Mechanical Properties
  • 2.3.5 Phases and Morphology
  • 2.4 Processing
  • 2.4.1 Injection Molding
  • 2.4.2 Extrusion
  • 2.4.3 Free Surface Flow
  • 2.4.4 LC Polymer Fiber Spinning
  • 2.5 Blends Based on Liquid Crystal Polymers
  • 2.6 Composites of Liquid Crystal Polymers
  • 2.7 Applications
  • 2.7.1 LC Polymers as Optoelectronic Materials
  • 2.7.2 Liquid Crystalline Polymers in Displays
  • 2.7.3 Sensors and Actuators
  • 2.8 Environmental Impact and Recycling
  • 2.9 Concluding Remarks and Future Trends
  • Acknowledgment
  • References
  • 3 Polyamide 4,6, (PA4,6)
  • 3.1 Introduction and History
  • 3.2 Polymerization and Fabrication
  • 3.3 Properties
  • 3.4 Chemical Stability
  • 3.5 Compounding and Special Additives.
  • 3.6 Processing
  • 3.7 Applications
  • 3.8 Blends of Polyamide 4,6, (PA4,6)
  • 3.9 Composites of Polyamide 4,6, (PA4,6)
  • 3.10 Nanocomposites of Polyamide 4,6, (PA4,6)
  • 3.11 Environmental Impact and Recycling
  • 3.12 Conclusions
  • References
  • 4 Polyacrylamide (PAM)
  • 4.1 Introduction and History
  • 4.2 Polymerization and Fabrication
  • 4.3 Properties
  • 4.4 Chemical Stability
  • 4.5 Compounding and Special Additives
  • 4.6 Processing
  • 4.7 Applications
  • 4.8 Blends of Polyacrylamide
  • 4.9 Composites of Polyacrylamide
  • 4.10 Nanocomposites of Polyacrylamide
  • 4.11 Environmental Impact and Recycling
  • 4.12 Conclusions
  • References
  • 5 Effect of Nanostructured Polyhedral Oligomeric Silsesquioxone on High Performance Poly(urethane-imide)
  • 5.1 Introduction
  • 5.2 Experimental
  • 5.3 Results and Discussion
  • 5.4 Conclusions
  • References
  • 6 Thermoplastic Polyimide (TPI)
  • 6.1 Introduction and History
  • 6.2 Polymerization and Fabrication
  • 6.2.1 Thermoplastic Polyimides Based on BEPA
  • 6.2.2 Thermoplastic Polyimides based on PMDA
  • 6.2.3 Thermoplastic Polyimides Based on BTDA
  • 6.2.4 Thermoplastic Polyimides Based on ODPA
  • 6.2.5 Thermoplastic Polyimides Based on BPDA
  • 6.2.6 Thermoplastic Copolyimides
  • 6.3 Properties
  • 6.3.1 TPI Based on BEPA
  • 6.3.2 Thermoplastic Polyimides Based on PMDA
  • 6.3.3 TPI Based on ODPA
  • 6.3.4 Thermoplastic Polyimides Based on BPDA
  • 6.3.5 Thermoplastic Copolyimides
  • 6.4 Chemical Stability
  • 6.4.1 Hydrolytic Stability
  • 6.4.2 Oxidative Stability
  • 6.5 Compounding
  • 6.5.1 Chloromethylation
  • 6.5.2 Sulfonation
  • 6.5.3 Phosphorylation
  • 6.5.4 Bromination
  • 6.5.5 Arylation
  • 6.6 Processing
  • 6.6.1 Injection Molding
  • 6.6.2 Compression Molding
  • 6.6.3 Extrusion Molding
  • 6.6.4 Coating
  • 6.6.5 Spinning
  • 6.7 Applications
  • 6.7.1 Membranes
  • 6.7.2 Adhesives
  • 6.7.3 Composites.
  • 6.7.3.1 Skybond
  • 6.7.4 Engineering Plastics
  • 6.7.4.1 VESPEL Plastics
  • 6.7.4.2 ULTEM Plastics
  • 6.7.4.3 AURUM Plastics
  • 6.7.4.4 Ratem Plastics
  • 6.8 Blends of Thermoplastic Polyimide (TPI)
  • 6.8.1 TPI Blends with TPI
  • 6.8.2 Polyamic Acid Blending
  • 6.9 Composites of Thermoplastic Polyimide (TPI)
  • 6.9.1 LaRC Composites
  • 6.9.2 Skybond
  • 6.9.3 PAI Polyamide-Imide Composites
  • 6.10 Nanocomposites of Thermoplastic Polyimide (TPI)
  • 6.10.1 TPI/silver Nanocomposite
  • 6.10.2 TPI/Fe-FeO Nanocomposite
  • 6.10.3 TPI/Carbon Nanocomposites
  • 6.10.4 TPI/CF/TiO2 Nanocomposite
  • 6.11 Environmental Impact and Recycling
  • 6.12 Conclusions
  • References
  • 7 Advances in High-Performance Polymers Bearing Phthalazinone Moieties
  • 7.1 Introduction
  • 7.2 A New Mmonomer: 1, 2-Dihydro-4-(4-hydroxyphenyl)-1-(2H)-phthalazinone
  • 7.3 Synthesis and Properties of Phthalazinone-Containing Poly(aryl ether)s
  • 7.3.1 Poly(phthalazinone ether sulfone ketone)s (PPESKs)
  • 7.3.2 Poly(phthalazinone ether ketone ketone) (PPEKK) and Its Copolymers
  • 7.3.3 Poly(phthalazinone ether nitrile sulfone ketone)s (PPENSKs)
  • 7.3.4 Polyarylether Containing Aryl-s-triazine and Phthalazinone Moieties
  • 7.4 Polyamides and Polyimides Containing Phthalazinone Moieties
  • 7.5 Phthalazinone-Containing Polyarylates
  • 7.6 Phthalazinone-Containing Polybenzimidazole
  • 7.7 Conclusions and Prospects
  • Acknowledgments
  • References
  • 8 Poly (ethylene terephthalate)-PET and Poly(ethylene naphthalate)-PEN
  • 8.1 Introduction
  • 8.2 Synthesis of PET and PEN
  • 8.2.1 PET Production
  • 8.3 Processing of Neat Polymers
  • 8.3.1 Materials Feeding
  • 8.3.2 Melting and Compounding
  • 8.3.3 Venting
  • 8.3.4 Metering
  • 8.3.5 Temperature Managing
  • 8.3.6 Die Forming and Post-Die Treatments
  • 8.3.7 Tandem Extruders Configuration
  • 8.4 Nanocomposites
  • 8.4.1 Isodimensional Nanoparticles.
  • 8.4.2 Clay Nanoparticles
  • 8.4.3 Carbon-Based Nanoparticles
  • 8.5 Nanocomposites Production Processes
  • 8.5.1 In Situ Polymerization
  • 8.5.2 Solution Intercalation (Or Solution Blending)
  • 8.5.3 Direct Mixing
  • 8.5.4 Melt Compounding (High Shear Mixing)
  • 8.5.5 Three Roll Milling
  • 8.5.6 Dispersion Aids (Ultrasounds)
  • 8.5.7 Solid-State Shear Processing
  • 8.5.8 Combined Approaches
  • 8.6 Structural and Functional Properties
  • 8.6.1 Mechanical Behavior
  • 8.6.2 Thermal Resistance
  • 8.6.3 Transport Properties
  • 8.6.4 Electrical Conductivity
  • 8.6.5 Rheological Properties
  • References
  • 9 High-Performance Oil/Fuel-Resistant Blends of Ethylene Propylene Diene Monomer (EPDM) and Epoxidized Natural Rubber (ENR)
  • 9.1 Introduction
  • 9.2 Experimental
  • 9.3 Result and Discussion
  • 9.3.1 Optimization of Curing System for the ENR/EPDM Blends
  • 9.3.2 Optimization of Blend Ratio for the ENR/EPDM Blends
  • 9.3.3 Optimization of MAH Concentration for Maleation of EPDM
  • 9.3.4 Characterization of ENR-MA-G-EPDM Blends
  • 9.3.5 Optimization of Processing Temperature for ENR-MAG EPDM Blends
  • 9.3.6 Compatibility Characteristics of ENR-MA-G-EPDM Blends
  • 9.3.6.1 Ultrasonic Velocity Measurements in Solution
  • 9.3.6.2 Thermomechanical Analysis (TMA)
  • 9.3.6.3 Scanning Electron Microscopy (SEM) Studies
  • 9.3.7 Evaluation of the Mechanical Properties of Individual Rubbers and Blends
  • 9.3.7.1 Stress-Strain Properties
  • 9.3.7.2 Determination of Hardness
  • 9.3.7.3 Oil/Fuel Swelling Studies
  • 9.3.7.4 Aging Studies
  • 9.3.7.5 Thermogravimetric Analysis (TGA)
  • 9.3.8 Effect of Addition of Carbon Black in ENR/MA-G-EPDM Blend
  • 9.4 Summary and Conclusions
  • Acknowledgement
  • References
  • 10 High-Performance Unsaturated Polyester/ f-MWCNTs Nanocomposites Induced by f-Graphene Nanoplatelets
  • 10.1 Introduction and History
  • 10.1.1 Polymerization.
  • 10.1.2 Fabrication
  • 10.1.2.1 Hand Lay-Up
  • 10.1.2.2 Spray Lay-Up
  • 10.1.2.3 Compression Molding
  • 10.1.2.4 Filament Winding
  • 10.1.3 Chemical Stability of UPE
  • 10.1.4 Compounding and Special Additives
  • 10.1.5 Applications
  • 10.2 Nanocomposites of UPE
  • 10.2.1 Experimental Details
  • 10.2.1.1 Materials
  • 10.2.1.2 Methods
  • 10.2.2 Instruments and Measurements
  • 10.2.2.1 Fourier Transform Infrared (FTIR) Spectroscopy
  • 10.2.2.2 Scanning Electron Microscopy (SEM)
  • 10.2.2.3 Transmission Electron Microscope (TEM)
  • 10.2.2.4 Contact Angle Determination
  • 10.2.2.5 Dynamic Mechanical Analysis
  • 10.2.2.6 Impact Testing
  • 10.2.2.7 Water Absorption Capacity Determination
  • 10.2.3 Results and Discussion
  • 10.2.3.1 FTIR Analysis
  • 10.2.3.2 SEM Analysis
  • 10.2.3.3 TEM Analysis
  • 10.2.3.4 Contact Angle
  • 10.2.3.5 Thermomechanical Properties of UPE/Single Filler and UPE/Hybrid Filler Nanocomposites
  • 10.2.3.6 Water Absorption Capacity
  • Conclusion and Future Challenges
  • References
  • Index
  • EULA.