High performance polymers and their nanocomposites
High Performance Polymers and Their Nanocomposites summarizes many of the recent research accomplishments in the area of high performance polymers, such as: high performance polymers-based nanocomposites, liquid crystal polymers, polyamide 4, 6, polyamideimide, polyacrylamide, polyacrylamide-based c...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
Scrivener Publishing, Wiley
[2019]
|
Edición: | 1st edition |
Colección: | THEi Wiley ebooks.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630488706719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright Page
- Contents
- Preface
- 1 High-Performance Polymer Nanocomposites and Their Applications: State of Art and New Challenges
- 1.1 Liquid Crystal Polymers
- 1.2 Polyamide 4, 6, (PA4,6)
- 1.3 Polyacrylamide
- 1.4 Effect of Nanostructured Polyhedral Oligomeric Silsesquioxone on High Performance Poly(urethane-Imide)
- 1.5 Thermoplastic Polyimide
- 1.6 Performance Properties and Applications of Polytetrafluoroethylene (PTFE)
- 1.7 Advances in High-Performance Polymers Bearing Phthalazinone Moieties
- 1.8 Poly(ethylene Terephthalate)-PET and Poly(ethylene Naphthalate)-PEN
- 1.9 High-Performance Oil Resistant Blends of Ethylene Propylene Diene Monomer (EPDM) and Epoxydized Natural Rubber (ENR)
- 1.10 High Performance Unsaturated Polyester/ f-MWCNTs Nanocomposites Induced by F-Graphene Nanoplatelets
- References
- 2 Liquid Crystal Polymers
- 2.1 Introduction and History
- 2.2 Polymerization
- 2.2.1 Synthesis of Lyotropic LC Polymers
- 2.2.2 Synthesis of Thermotropic LC Polymers
- 2.3 Properties
- 2.3.1 Rheology
- 2.3.2 Dielectric Behavior
- 2.3.3 Magnetic Properties
- 2.3.4 Mechanical Properties
- 2.3.5 Phases and Morphology
- 2.4 Processing
- 2.4.1 Injection Molding
- 2.4.2 Extrusion
- 2.4.3 Free Surface Flow
- 2.4.4 LC Polymer Fiber Spinning
- 2.5 Blends Based on Liquid Crystal Polymers
- 2.6 Composites of Liquid Crystal Polymers
- 2.7 Applications
- 2.7.1 LC Polymers as Optoelectronic Materials
- 2.7.2 Liquid Crystalline Polymers in Displays
- 2.7.3 Sensors and Actuators
- 2.8 Environmental Impact and Recycling
- 2.9 Concluding Remarks and Future Trends
- Acknowledgment
- References
- 3 Polyamide 4,6, (PA4,6)
- 3.1 Introduction and History
- 3.2 Polymerization and Fabrication
- 3.3 Properties
- 3.4 Chemical Stability
- 3.5 Compounding and Special Additives.
- 3.6 Processing
- 3.7 Applications
- 3.8 Blends of Polyamide 4,6, (PA4,6)
- 3.9 Composites of Polyamide 4,6, (PA4,6)
- 3.10 Nanocomposites of Polyamide 4,6, (PA4,6)
- 3.11 Environmental Impact and Recycling
- 3.12 Conclusions
- References
- 4 Polyacrylamide (PAM)
- 4.1 Introduction and History
- 4.2 Polymerization and Fabrication
- 4.3 Properties
- 4.4 Chemical Stability
- 4.5 Compounding and Special Additives
- 4.6 Processing
- 4.7 Applications
- 4.8 Blends of Polyacrylamide
- 4.9 Composites of Polyacrylamide
- 4.10 Nanocomposites of Polyacrylamide
- 4.11 Environmental Impact and Recycling
- 4.12 Conclusions
- References
- 5 Effect of Nanostructured Polyhedral Oligomeric Silsesquioxone on High Performance Poly(urethane-imide)
- 5.1 Introduction
- 5.2 Experimental
- 5.3 Results and Discussion
- 5.4 Conclusions
- References
- 6 Thermoplastic Polyimide (TPI)
- 6.1 Introduction and History
- 6.2 Polymerization and Fabrication
- 6.2.1 Thermoplastic Polyimides Based on BEPA
- 6.2.2 Thermoplastic Polyimides based on PMDA
- 6.2.3 Thermoplastic Polyimides Based on BTDA
- 6.2.4 Thermoplastic Polyimides Based on ODPA
- 6.2.5 Thermoplastic Polyimides Based on BPDA
- 6.2.6 Thermoplastic Copolyimides
- 6.3 Properties
- 6.3.1 TPI Based on BEPA
- 6.3.2 Thermoplastic Polyimides Based on PMDA
- 6.3.3 TPI Based on ODPA
- 6.3.4 Thermoplastic Polyimides Based on BPDA
- 6.3.5 Thermoplastic Copolyimides
- 6.4 Chemical Stability
- 6.4.1 Hydrolytic Stability
- 6.4.2 Oxidative Stability
- 6.5 Compounding
- 6.5.1 Chloromethylation
- 6.5.2 Sulfonation
- 6.5.3 Phosphorylation
- 6.5.4 Bromination
- 6.5.5 Arylation
- 6.6 Processing
- 6.6.1 Injection Molding
- 6.6.2 Compression Molding
- 6.6.3 Extrusion Molding
- 6.6.4 Coating
- 6.6.5 Spinning
- 6.7 Applications
- 6.7.1 Membranes
- 6.7.2 Adhesives
- 6.7.3 Composites.
- 6.7.3.1 Skybond
- 6.7.4 Engineering Plastics
- 6.7.4.1 VESPEL Plastics
- 6.7.4.2 ULTEM Plastics
- 6.7.4.3 AURUM Plastics
- 6.7.4.4 Ratem Plastics
- 6.8 Blends of Thermoplastic Polyimide (TPI)
- 6.8.1 TPI Blends with TPI
- 6.8.2 Polyamic Acid Blending
- 6.9 Composites of Thermoplastic Polyimide (TPI)
- 6.9.1 LaRC Composites
- 6.9.2 Skybond
- 6.9.3 PAI Polyamide-Imide Composites
- 6.10 Nanocomposites of Thermoplastic Polyimide (TPI)
- 6.10.1 TPI/silver Nanocomposite
- 6.10.2 TPI/Fe-FeO Nanocomposite
- 6.10.3 TPI/Carbon Nanocomposites
- 6.10.4 TPI/CF/TiO2 Nanocomposite
- 6.11 Environmental Impact and Recycling
- 6.12 Conclusions
- References
- 7 Advances in High-Performance Polymers Bearing Phthalazinone Moieties
- 7.1 Introduction
- 7.2 A New Mmonomer: 1, 2-Dihydro-4-(4-hydroxyphenyl)-1-(2H)-phthalazinone
- 7.3 Synthesis and Properties of Phthalazinone-Containing Poly(aryl ether)s
- 7.3.1 Poly(phthalazinone ether sulfone ketone)s (PPESKs)
- 7.3.2 Poly(phthalazinone ether ketone ketone) (PPEKK) and Its Copolymers
- 7.3.3 Poly(phthalazinone ether nitrile sulfone ketone)s (PPENSKs)
- 7.3.4 Polyarylether Containing Aryl-s-triazine and Phthalazinone Moieties
- 7.4 Polyamides and Polyimides Containing Phthalazinone Moieties
- 7.5 Phthalazinone-Containing Polyarylates
- 7.6 Phthalazinone-Containing Polybenzimidazole
- 7.7 Conclusions and Prospects
- Acknowledgments
- References
- 8 Poly (ethylene terephthalate)-PET and Poly(ethylene naphthalate)-PEN
- 8.1 Introduction
- 8.2 Synthesis of PET and PEN
- 8.2.1 PET Production
- 8.3 Processing of Neat Polymers
- 8.3.1 Materials Feeding
- 8.3.2 Melting and Compounding
- 8.3.3 Venting
- 8.3.4 Metering
- 8.3.5 Temperature Managing
- 8.3.6 Die Forming and Post-Die Treatments
- 8.3.7 Tandem Extruders Configuration
- 8.4 Nanocomposites
- 8.4.1 Isodimensional Nanoparticles.
- 8.4.2 Clay Nanoparticles
- 8.4.3 Carbon-Based Nanoparticles
- 8.5 Nanocomposites Production Processes
- 8.5.1 In Situ Polymerization
- 8.5.2 Solution Intercalation (Or Solution Blending)
- 8.5.3 Direct Mixing
- 8.5.4 Melt Compounding (High Shear Mixing)
- 8.5.5 Three Roll Milling
- 8.5.6 Dispersion Aids (Ultrasounds)
- 8.5.7 Solid-State Shear Processing
- 8.5.8 Combined Approaches
- 8.6 Structural and Functional Properties
- 8.6.1 Mechanical Behavior
- 8.6.2 Thermal Resistance
- 8.6.3 Transport Properties
- 8.6.4 Electrical Conductivity
- 8.6.5 Rheological Properties
- References
- 9 High-Performance Oil/Fuel-Resistant Blends of Ethylene Propylene Diene Monomer (EPDM) and Epoxidized Natural Rubber (ENR)
- 9.1 Introduction
- 9.2 Experimental
- 9.3 Result and Discussion
- 9.3.1 Optimization of Curing System for the ENR/EPDM Blends
- 9.3.2 Optimization of Blend Ratio for the ENR/EPDM Blends
- 9.3.3 Optimization of MAH Concentration for Maleation of EPDM
- 9.3.4 Characterization of ENR-MA-G-EPDM Blends
- 9.3.5 Optimization of Processing Temperature for ENR-MAG EPDM Blends
- 9.3.6 Compatibility Characteristics of ENR-MA-G-EPDM Blends
- 9.3.6.1 Ultrasonic Velocity Measurements in Solution
- 9.3.6.2 Thermomechanical Analysis (TMA)
- 9.3.6.3 Scanning Electron Microscopy (SEM) Studies
- 9.3.7 Evaluation of the Mechanical Properties of Individual Rubbers and Blends
- 9.3.7.1 Stress-Strain Properties
- 9.3.7.2 Determination of Hardness
- 9.3.7.3 Oil/Fuel Swelling Studies
- 9.3.7.4 Aging Studies
- 9.3.7.5 Thermogravimetric Analysis (TGA)
- 9.3.8 Effect of Addition of Carbon Black in ENR/MA-G-EPDM Blend
- 9.4 Summary and Conclusions
- Acknowledgement
- References
- 10 High-Performance Unsaturated Polyester/ f-MWCNTs Nanocomposites Induced by f-Graphene Nanoplatelets
- 10.1 Introduction and History
- 10.1.1 Polymerization.
- 10.1.2 Fabrication
- 10.1.2.1 Hand Lay-Up
- 10.1.2.2 Spray Lay-Up
- 10.1.2.3 Compression Molding
- 10.1.2.4 Filament Winding
- 10.1.3 Chemical Stability of UPE
- 10.1.4 Compounding and Special Additives
- 10.1.5 Applications
- 10.2 Nanocomposites of UPE
- 10.2.1 Experimental Details
- 10.2.1.1 Materials
- 10.2.1.2 Methods
- 10.2.2 Instruments and Measurements
- 10.2.2.1 Fourier Transform Infrared (FTIR) Spectroscopy
- 10.2.2.2 Scanning Electron Microscopy (SEM)
- 10.2.2.3 Transmission Electron Microscope (TEM)
- 10.2.2.4 Contact Angle Determination
- 10.2.2.5 Dynamic Mechanical Analysis
- 10.2.2.6 Impact Testing
- 10.2.2.7 Water Absorption Capacity Determination
- 10.2.3 Results and Discussion
- 10.2.3.1 FTIR Analysis
- 10.2.3.2 SEM Analysis
- 10.2.3.3 TEM Analysis
- 10.2.3.4 Contact Angle
- 10.2.3.5 Thermomechanical Properties of UPE/Single Filler and UPE/Hybrid Filler Nanocomposites
- 10.2.3.6 Water Absorption Capacity
- Conclusion and Future Challenges
- References
- Index
- EULA.