Application of smart grid technologies case studies in saving electricity in different parts of the world

Application of Smart Grid Technologies: Case Studies in Saving Electricity in Different Parts of the World provides a wide international view of smart grid technologies and their implementation in all regions of the globe. A brief overview of smart grid concepts and state-of-the art technologies is...

Descripción completa

Detalles Bibliográficos
Otros Autores: Lamont, Lisa, author (author), Lamont, Lisa, editor (editor), Ṣāʼigh, ʻAlī, editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: London : Academic Press, an imprint of Elsevier [2018]
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630468906719
Tabla de Contenidos:
  • Front Cover
  • Application of Smart Grid Technologies: Case Studies in Saving Electricity in Different Parts of the World
  • Copyright
  • Contents
  • List of contributors
  • Preface
  • Chapter 1: Smart grids-Overview and background information
  • 1. Introduction
  • 2. Definition
  • 3. Components
  • 4. Renewable energy resources
  • 5. Load management
  • 6. Energy storage
  • 7. Self-healing
  • 8. Customer active participation
  • 9. Security
  • 10. Power quality
  • 11. DG and storage
  • 12. Efficient operation
  • 13. Summary
  • References
  • Part One: Asia
  • Chapter 2: Iranian smart grid: road map and metering program
  • 1. Smart grid technology roadmap in Iran
  • 1.1. Introduction
  • 1.2. Economic, social, and environmental requirements of smart grid development
  • 1.3. Values
  • 1.4. Vision of Iran smart grid
  • 1.5. Grand policies
  • 1.6. Grand goals
  • 1.7. Technology development, strategies, and measures
  • 1.8. Financing and resource allocation
  • 1.9. Updating and evaluation of the road map
  • 1.9.1. Evaluation indices
  • 1.9.2. Evaluation reports
  • 1.10. Deployment strategy
  • 2. National smart meter program
  • 2.1. Pilot project
  • 2.2. Goals and benefits of AMI implementation in Iran
  • 2.3. System components and interfaces
  • 2.4. Communication profile
  • 2.4.1. MI1-CI1 (electricity meter-concentrator)
  • 2.4.2. MI2-SI2 (electricity meter-CAS)
  • 2.4.3. CI2-SI1 (concentrator-CAS)
  • 2.4.4. CI3 (data concentrator to the smart grid devices)
  • 2.4.5. MI3 (multiutility meter-electricity meter/communication hub)
  • 2.5. Layer model of AMI
  • 2.6. ICT architecture and CAS communications
  • 2.7. Interoperability
  • 2.8. Security
  • 2.8.1. Security assumptions
  • 2.8.2. Foundational security requirements
  • 2.9. Use cases
  • 2.9.1. Use case 1: Provide periodic meter reads
  • 2.9.2. Use case 2: Provide load profile.
  • 2.9.3. Use case 3: Provide power quality information
  • 2.9.4. Use case 4: Provide interruption information
  • 2.9.5. Use case 5: Provide tamper history (tamper detection)
  • 2.9.6. Use case 6: Apply electricity threshold and load management
  • 2.10. Application systems
  • 3. Conclusions
  • References
  • Further reading
  • Chapter 3: Intelligent control and protection in the Russian electric power system
  • 1. Summary
  • 1.1. Intelligent energy system as Russian vision of smart grid
  • 1.2. Informational support of IESAAN control problems
  • 1.3. Intelligent operation and smart emergency protection
  • 1.4. Smart grid clusters in Russia
  • 2. Intelligent energy system as Russian vision of smart grid
  • 2.1. Technological platform, intelligent energy system of Russia
  • 2.2. Intelligent electric power system with an active and adaptive network (IESAAN)
  • 2.3. Control system of IESAAN
  • 3. Informational support of IESAAN control problems
  • 3.1. SCADA and WAMS
  • 3.2. The electric power system state estimation problem. Specific features of state estimation for the control of IESAAN
  • 3.3. The main directions in the development of SE methods and technologies of their application to control of IESAAN
  • 3.3.1. Phasor measurements in the state estimation problem
  • 3.3.1.1. The use of TEs for validation of measurements
  • 3.3.1.2. Systematic errors in PMU measurements
  • 3.3.1.3. Decomposition
  • 3.3.2. State estimation of electric power system involving FACTS models
  • 3.3.3. Dynamic state estimation and its application
  • 3.3.3.1. Criteria for the estimate accuracy
  • 3.3.3.2. Detection of bad data in measurements by the methods of dynamic EPS state estimation
  • 3.3.3.3. Description of the devised method
  • 3.3.4. Supporting cyber-physical security of the electric power system by the state estimation technique.
  • 3.3.4.1. Cybersecurity of SCADA systems and WAMS
  • 3.3.4.2. Technique analysis of the cybersecurity of SCADA and WAMS in a two-level state estimation
  • 3.3.4.3. Methodology of cyberattack identification
  • 3.3.4.4. Case study
  • 4. Intelligent operation and smart emergency protection
  • 4.1. Emergency control system in Russia
  • 4.2. Requirements for new emergency protection and operation systems
  • 4.3. The system of monitoring, forecasting, and control of power systems
  • 4.3.1. General structure
  • 4.3.2. Forecasting
  • 4.3.3. Security monitoring and control
  • 4.4. Artificial intelligence applications
  • 4.4.1. Forecast of state variables based on the dynamic state estimation method
  • 4.4.2. Forecast of power system parameters based on a hybrid data-driven approach
  • 4.4.3. Total transfer capability estimation method
  • 4.4.4. Automatic decision tree-based system for online voltage security control of power systems
  • 4.4.5. Multiagent coordination of emergency control devices
  • 4.4.6. Intelligent system for preventing large-scale emergencies in power system
  • 5. Smart grid clusters in Russia
  • 5.1. Smart grid clusters in the east interconnected power system
  • 5.1.1. Smart grid clusters
  • 5.1.2. Pilot project for creation of territorial smart grid cluster in Russky and Popov Islands
  • 5.2. Smart grid clusters in northwest interconnected power system
  • 5.3. Pilot project on electricity supply to the Skolkovo innovation center
  • 6. Conclusion
  • References
  • Part Two: North America
  • Chapter 4: Demand response: An enabling technology to achieve energy efficiency in a smart grid
  • 1. Introduction
  • 2. Demand response development in the United States
  • 2.1. Demand response at consumer-premise level
  • 2.2. Demand response at utilities level
  • 2.2.1. PG&E
  • 2.2.2. SCE
  • 2.2.3. ComEd
  • 2.2.4. WPS
  • 2.2.5. Con Edison.
  • 2.2.6. Gulf Power
  • 2.3. Demand response at ISO/RTO level
  • 2.3.1. NYISO
  • 2.3.2. ERCOT
  • 2.3.3. PJM interconnection
  • 2.3.4. California ISO
  • 2.3.5. ISO New England
  • 2.4. Incentive-based approaches vs. pricing-based approaches for residential DR
  • 3. A distributed direct load-control mechanism for residential DR
  • 3.1. Two-layer communication-based direct load-control architecture
  • 3.1.1. Load information update phase
  • 3.1.2. Target update phase
  • 3.1.3. Admission control phase
  • 3.2. Distributed demand target allocation in upper-layer EMC network
  • 3.3. Lower-layer communication and admission control scheme
  • 3.3.1. Load information update
  • 3.3.2. Admission control mechanism
  • 3.4. Nonintrusive operation for appliances
  • 3.4.1. Customer override option
  • 3.4.2. Preventing frequent ON/OFF switching
  • 3.4.3. Operation deadline constraint
  • 4. Numerical results
  • 4.1. Scheduling results
  • 4.2. Effects of EMC network size
  • 4.3. Effects of DR resources
  • 5. Summary
  • References
  • Chapter 5: Development of a residential microgrid using home energy management systems
  • 1. Introduction
  • 2. Home energy system overview
  • 2.1. Communication protocol
  • 2.2. System hardware configuration
  • 2.3. System software configuration
  • 2.3.1. Monitoring
  • 2.3.2. Scheduling
  • 2.4. Scheduling methodology
  • 2.5. Case studies and results
  • 3. Smart buildings/smart residential community
  • 3.1. Communication protocol
  • 3.2. System hardware/software control configuration
  • 3.3. Scheduling methodology
  • 3.4. Case studies and results
  • 4. Conclusion
  • References
  • Part Three: South America
  • Chapter 6: Case studies in saving electricity in Brazil
  • 1. Introduction-Brazilian motivation
  • 2. Smart Grid perspective in Brazil
  • 3. Main Smart Grid projects in Brazil
  • 3.1. Cities of the future
  • 3.2. Eletropaulo Digital.
  • 3.3. Smart Grid Light
  • 3.4. Parintins Project
  • 3.5. Búzios Intelligent City
  • 3.6. Fernando de Noronha Archipelago Smart Grid project
  • 3.7. InovCity project
  • 3.8. CPFL Smart Grid
  • 3.9. Aquiraz Smart City
  • 3.10. Paraná Smart Grid pilot
  • 3.11. Elektro Smart Grid project
  • 3.12. Summary of the 11 Smart Grid projects
  • 4. Centers for research development and innovation (CRD&I)
  • 5. Smart Grid roadmap-Brazilian case
  • 6. Lessons learned, diagnostics, and barriers
  • 7. Conclusions
  • References
  • Further reading
  • Part Four: Europe
  • Chapter 7: Automation for smart grids in Europe
  • 1. Introduction
  • 1.1. Distribution system operators challenges and needs in the EU
  • 1.1.1. Regulations about service continuity
  • 1.1.2. Regulations about voltage quality
  • 1.2. Smart grid automation demos in Europe
  • 1.3. IDE4L at a glance
  • 2. Architecture
  • 2.1. DSO control hierarchy
  • 2.2. Commercial aggregator control hierarchy and interaction with DSO
  • 3. IDE4L demo
  • 3.1. Unareti field demonstrator
  • 3.1.1. MV demo
  • 3.1.2. LV demo
  • 3.2. TUT laboratory demonstrator
  • 3.3. RWTH laboratory demonstrator
  • 4. Monitoring and forecast
  • 4.1. Performance of the communication network for the LV monitoring
  • 4.2. Analysis of data from the LV monitoring system
  • 5. State estimation and voltage control
  • 5.1. State estimation results
  • 5.2. Secondary voltage control results
  • 6. The role of the aggregator in the IDE4L automation architecture
  • 7. Conclusions
  • References
  • Chapter 8: Smart distribution networks, demand side response, and community energy systems: Field trial experiences and s ...
  • 1. The UK electricity context
  • 1.1. Overview and future scenarios
  • 1.2. Energy markets and key actors
  • 1.2.1. Electricity markets and mechanisms
  • 1.2.2. Actors
  • 1.3. Distribution networks
  • 1.4. The consumption side.
  • 2. Smart grid features.