Assessing and Improving Prediction and Classification Theory and Algorithms in C++
Carry out practical, real-life assessments of the performance of prediction and classification models written in C++. This book discusses techniques for improving the performance of such models by intelligent resampling of training/testing data, combining multiple models into sophisticated committee...
Autor principal: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Berkeley, CA :
Apress
2018.
|
Edición: | 1st ed. 2018. |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630450806719 |
Tabla de Contenidos:
- 1. Assessment of Numeric Predictions
- 2. Assessment of Class Predictions
- 3. Resampling for Assessing Parameter Estimates
- 4. Resampling for Assessing Prediction and Classification
- 5. Miscellaneous Resampling Techniques
- 6. Combining Numeric Predictions
- 7. Combining Classification Models
- 8. Gaiting Methods
- 9. Information and Entropy
- References.