Intelligent vibration control in civil engineering structures
Intelligent Vibration Control in Civil Engineering Structures provides readers with an all-encompassing view of the theoretical studies, design methods, real-world implementations, and applications relevant to the topic The book focuses on design and property tests on different intelligent control d...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Amsterdam, [Netherlands] :
Zhejiang University Press
2017.
|
Edición: | 1st edition |
Colección: | Intelligent systems series.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630445106719 |
Tabla de Contenidos:
- Front Cover
- Intelligent Vibration Control in Civil Engineering Structures
- Copyright Page
- Contents
- Preface
- 1 Introduction
- 1.1 Earthquake and Wind Disasters
- 1.1.1 Earthquake Disaster
- 1.1.2 Wind Disaster
- 1.2 Structure Vibration Control
- 1.2.1 Basic Principles
- 1.2.2 Classification
- 1.2.2.1 Vibration isolation
- 1.2.2.2 Vibration mitigation
- 1.2.3 Structure Intelligent Control
- 1.2.3.1 Active intelligent control
- 1.2.3.2 Semi-active intelligent control
- 1.2.3.3 Intelligent control algorithm
- 2 Intelligent Control Strategies
- 2.1 Equations of Motion of Intelligent Control System
- 2.2 Classical Linear Optimal Control Algorithm
- 2.2.1 LQR Optimal Control
- 2.2.1.1 Basic equation of LQR optimal control
- 2.2.1.2 Solution of optimal control
- 2.2.2 LQG Optimal Control
- 2.3 Pole Assignment Method
- 2.3.1 Pole Assignment Method with State Feedback
- 2.3.2 Pole Assignment Method With Output Feedback
- 2.4 Instantaneous Optimal Control Algorithm
- 2.5 Independent Mode Space Control
- 2.5.1 Modal Control Based on State Space
- 2.5.2 Modal Control Based on Equation of Motion
- 2.6 H∞ Feedback Control
- 2.6.1 H∞ Norm
- 2.6.2 H∞ Feedback Control
- 2.7 Sliding Mode Control
- 2.7.1 Design of Sliding Surface
- 2.7.2 Design of Controller
- 2.8 Optimal Polynomial Control
- 2.8.1 Basic Principle
- 2.8.2 Applications
- 2.9 Fuzzy Control
- 2.9.1 Basic Principle
- 2.9.2 Design of Fuzzy Controller
- 2.9.2.1 Determination of the basic domain
- 2.9.2.2 Fuzzification of the accurate value
- 2.9.2.3 Parameter selection
- 2.9.2.4 Selection of the membership function
- 2.9.2.5 Determination of the rule base
- 2.9.2.6 Defuzzification
- 2.10 Neural Network Control
- 2.10.1 Basic Principle
- 2.10.2 Learning Method
- 2.11 Particle Swarm Optimization Control
- 2.11.1 Basic Principle.
- 2.11.1.1 The basic PSO algorithm
- 2.11.1.2 Improved PSO algorithm
- 2.11.2 Design Procedure of the PSO Algorithm
- 2.12 Genetic Algorithm
- 2.12.1 Basic Principle
- 2.12.2 Procedure of GA
- 2.12.2.1 Encoding scheme
- 2.12.2.2 Fitness techniques
- 2.12.2.3 Parent selection
- 2.12.2.4 Genetic operation
- 2.12.2.5 Replacement strategy
- 2.12.3 GA Control Realization
- 3 Active Intelligent Control
- 3.1 Principles and Classification
- 3.1.1 Buildup of Systems
- 3.1.2 Basic Principles
- 3.1.3 Classification
- 3.2 Active Mass Control System
- 3.2.1 Basic Principles
- 3.2.2 Construction and Design
- 3.2.3 Mathematical Models and Structural Analysis
- 3.2.4 Experiment and Engineering Example
- 3.3 Active Tendon System
- 3.3.1 Basic Principles
- 3.3.2 Construction and Design
- 3.3.3 Experiment and Engineering Example
- 3.4 Other Active Control System
- 3.4.1 Form and Principles
- 3.4.2 Analysis and Tests
- 4 Semiactive Intelligent Control
- 4.1 Principles and Classification
- 4.1.1 Basic Principles
- 4.1.2 Classification
- 4.2 MR Dampers
- 4.2.1 Basic Principles
- 4.2.1.1 Valve mode
- 4.2.1.2 Direct-shear mode
- 4.2.1.3 Squeeze mode
- 4.2.1.4 Magnetic gradient pinch mode
- 4.2.2 Construction and Design
- 4.2.3 Mathematical Models
- 4.2.3.1 Bingham model and modified Bingham model
- 4.2.3.2 Nonlinear hysteretic biviscous model
- 4.2.3.3 Bouc-Wen hysteresis model
- 4.2.3.4 Dahl model and modified Dahl model
- 4.2.3.5 Sigmoid model
- 4.2.3.6 Magnetic saturation mathematical model
- 4.2.4 Analysis and Design Methods
- 4.2.5 Tests and Engineering Applications
- 4.3 ER Dampers
- 4.3.1 Basic Principles
- 4.3.2 Construction and Design
- 4.3.3 Mathematical Models
- 4.3.3.1 Preyield mechanisms
- 4.3.3.2 Postyield mechanisms
- 4.3.3.3 Yield force
- 4.3.4 Analysis and Design Methods.
- 4.3.5 Tests and Engineering Applications
- 4.4 Piezoelectricity Friction Dampers
- 4.4.1 Basic Principles
- 4.4.2 Construction and Design
- 4.4.3 Mathematical Models
- 4.4.4 Analysis and Design Methods
- 4.4.5 Tests and Engineering Applications
- 4.5 Semiactive Varied Stiffness Damper
- 4.5.1 Basic Principles
- 4.5.2 Construction and Design
- 4.5.3 Mathematical Models
- 4.5.4 Analysis and Design Methods
- 4.5.5 Tests and Engineering Applications
- 4.6 Semiactive Varied Damping Damper
- 4.6.1 Basic Principles
- 4.6.2 Construction and Design
- 4.6.3 Mathematical Model
- 4.6.4 Analysis and Design Methods
- 4.6.5 Tests and Engineering Applications
- 4.7 MRE Device
- 4.7.1 Basic Principles
- 4.7.2 Construction and Design
- 4.7.3 Mathematical Models
- 4.7.4 Analysis and Design Methods
- 4.7.4.1 MRE vibration absorber
- 4.7.4.2 MRE damping device
- 4.7.5 Tests and Engineering Applications
- 5 Design and Parameters Optimization on Intelligent Control Devices
- 5.1 Design and Parameters Optimization on MR Damper
- 5.1.1 Design on MR Damper
- 5.1.1.1 Materials selection
- 5.1.1.2 Design principle
- 5.1.1.3 Geometry design
- 5.1.1.4 Magnetic circuit design
- 5.1.2 Parameters Optimization on MR Damper
- 5.1.2.1 Geometric optimization
- 5.1.2.2 Magnetic circuit optimization
- 5.2 Design and Parameters Optimization of MRE Device
- 5.2.1 Parameters Optimization for Magnetic Circuit
- 5.2.2 Magnetic Circuit FEM Simulation
- 5.3 Design and Parameters Optimization on Active Control
- 5.3.1 Design and Parameters Optimization Based on Feedback Gain
- 5.3.2 Design and Parameters Optimization Based on Minimum Energy Principle
- 5.3.3 Design and Parameters Optimization Based on Fail-Safe Reliability
- 6 Design and Study on Intelligent Controller
- 6.1 Design of Intelligent Controller.
- 6.1.1 The Design of the Acceleration Responses Collection
- 6.1.2 The Design of the Microcontroller
- 6.1.2.1 The PWM technology
- 6.1.2.2 The microcontroller chip
- 6.1.2.3 The optical coupler
- 6.2 Experimental Study on Intelligent Controller
- 7 Dynamic Response Analysis of the Intelligent Control Structure
- 7.1 Elastic Analysis
- 7.1.1 Mathematical Model of Structures
- 7.1.2 Determination of the Control Force of the MR Damper
- 7.1.3 Numerical Analysis
- 7.2 Elasto-Plastic Analysis Method
- 7.2.1 Restoring Force Model
- 7.2.2 Processing of Turning Points
- 7.2.2.1 Determination of p for the first kind of turning point
- 7.2.2.2 Determination of p for the second kind of turning point
- 7.2.2.3 Determination of p of the third kind of turning point
- 7.2.3 Elasto-Plastic Stiffness Matrix
- 7.3 Dynamic Response Analysis by SIMULINK
- 7.3.1 Simulation of the Controlled Structure
- 7.3.2 Numerical Analysis
- 8 Example and Program Analysis
- 8.1 Dynamic Analysis on Frame Structure With MR Dampers
- 8.1.1 Structural and Damper Parameters
- 8.1.2 Semiactive Control Strategy
- 8.1.3 Results and Analysis
- 8.2 Dynamic Analysis on Long-Span Structure With MR Dampers
- 8.2.1 Parameters and Modeling
- 8.2.2 Wind Load Simulation
- 8.2.3 Semiactive Control Strategy
- 8.2.4 Results and Analysis
- 8.3 Dynamic Analysis on Platform With MRE Devices
- 8.3.1 Modeling and Parameters
- 8.3.2 Semiactive Control Strategy
- 8.3.3 Results and Analysis
- 8.4 SIMULINK Analysis Example
- 8.4.1 The SIMULINK Example of the Structure Without Dampers
- 8.4.2 The SIMULINK Example of the Controlled Structure
- 8.5 Particle Swarm Optimization Control Example
- 8.5.1 Structural and Damper Parameters
- 8.5.2 The PSO Optimization Control
- 8.5.3 Results and Analysis
- 8.6 Active Control Example
- 8.6.1 Modeling and Parameters.
- 8.6.2 Active Control Strategy
- 8.6.3 Results and Analysis
- References
- Index
- Back Cover.