Intelligent vibration control in civil engineering structures

Intelligent Vibration Control in Civil Engineering Structures provides readers with an all-encompassing view of the theoretical studies, design methods, real-world implementations, and applications relevant to the topic The book focuses on design and property tests on different intelligent control d...

Descripción completa

Detalles Bibliográficos
Otros Autores: Xu, Zhao-Dong, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Amsterdam, [Netherlands] : Zhejiang University Press 2017.
Edición:1st edition
Colección:Intelligent systems series.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630445106719
Tabla de Contenidos:
  • Front Cover
  • Intelligent Vibration Control in Civil Engineering Structures
  • Copyright Page
  • Contents
  • Preface
  • 1 Introduction
  • 1.1 Earthquake and Wind Disasters
  • 1.1.1 Earthquake Disaster
  • 1.1.2 Wind Disaster
  • 1.2 Structure Vibration Control
  • 1.2.1 Basic Principles
  • 1.2.2 Classification
  • 1.2.2.1 Vibration isolation
  • 1.2.2.2 Vibration mitigation
  • 1.2.3 Structure Intelligent Control
  • 1.2.3.1 Active intelligent control
  • 1.2.3.2 Semi-active intelligent control
  • 1.2.3.3 Intelligent control algorithm
  • 2 Intelligent Control Strategies
  • 2.1 Equations of Motion of Intelligent Control System
  • 2.2 Classical Linear Optimal Control Algorithm
  • 2.2.1 LQR Optimal Control
  • 2.2.1.1 Basic equation of LQR optimal control
  • 2.2.1.2 Solution of optimal control
  • 2.2.2 LQG Optimal Control
  • 2.3 Pole Assignment Method
  • 2.3.1 Pole Assignment Method with State Feedback
  • 2.3.2 Pole Assignment Method With Output Feedback
  • 2.4 Instantaneous Optimal Control Algorithm
  • 2.5 Independent Mode Space Control
  • 2.5.1 Modal Control Based on State Space
  • 2.5.2 Modal Control Based on Equation of Motion
  • 2.6 H∞ Feedback Control
  • 2.6.1 H∞ Norm
  • 2.6.2 H∞ Feedback Control
  • 2.7 Sliding Mode Control
  • 2.7.1 Design of Sliding Surface
  • 2.7.2 Design of Controller
  • 2.8 Optimal Polynomial Control
  • 2.8.1 Basic Principle
  • 2.8.2 Applications
  • 2.9 Fuzzy Control
  • 2.9.1 Basic Principle
  • 2.9.2 Design of Fuzzy Controller
  • 2.9.2.1 Determination of the basic domain
  • 2.9.2.2 Fuzzification of the accurate value
  • 2.9.2.3 Parameter selection
  • 2.9.2.4 Selection of the membership function
  • 2.9.2.5 Determination of the rule base
  • 2.9.2.6 Defuzzification
  • 2.10 Neural Network Control
  • 2.10.1 Basic Principle
  • 2.10.2 Learning Method
  • 2.11 Particle Swarm Optimization Control
  • 2.11.1 Basic Principle.
  • 2.11.1.1 The basic PSO algorithm
  • 2.11.1.2 Improved PSO algorithm
  • 2.11.2 Design Procedure of the PSO Algorithm
  • 2.12 Genetic Algorithm
  • 2.12.1 Basic Principle
  • 2.12.2 Procedure of GA
  • 2.12.2.1 Encoding scheme
  • 2.12.2.2 Fitness techniques
  • 2.12.2.3 Parent selection
  • 2.12.2.4 Genetic operation
  • 2.12.2.5 Replacement strategy
  • 2.12.3 GA Control Realization
  • 3 Active Intelligent Control
  • 3.1 Principles and Classification
  • 3.1.1 Buildup of Systems
  • 3.1.2 Basic Principles
  • 3.1.3 Classification
  • 3.2 Active Mass Control System
  • 3.2.1 Basic Principles
  • 3.2.2 Construction and Design
  • 3.2.3 Mathematical Models and Structural Analysis
  • 3.2.4 Experiment and Engineering Example
  • 3.3 Active Tendon System
  • 3.3.1 Basic Principles
  • 3.3.2 Construction and Design
  • 3.3.3 Experiment and Engineering Example
  • 3.4 Other Active Control System
  • 3.4.1 Form and Principles
  • 3.4.2 Analysis and Tests
  • 4 Semiactive Intelligent Control
  • 4.1 Principles and Classification
  • 4.1.1 Basic Principles
  • 4.1.2 Classification
  • 4.2 MR Dampers
  • 4.2.1 Basic Principles
  • 4.2.1.1 Valve mode
  • 4.2.1.2 Direct-shear mode
  • 4.2.1.3 Squeeze mode
  • 4.2.1.4 Magnetic gradient pinch mode
  • 4.2.2 Construction and Design
  • 4.2.3 Mathematical Models
  • 4.2.3.1 Bingham model and modified Bingham model
  • 4.2.3.2 Nonlinear hysteretic biviscous model
  • 4.2.3.3 Bouc-Wen hysteresis model
  • 4.2.3.4 Dahl model and modified Dahl model
  • 4.2.3.5 Sigmoid model
  • 4.2.3.6 Magnetic saturation mathematical model
  • 4.2.4 Analysis and Design Methods
  • 4.2.5 Tests and Engineering Applications
  • 4.3 ER Dampers
  • 4.3.1 Basic Principles
  • 4.3.2 Construction and Design
  • 4.3.3 Mathematical Models
  • 4.3.3.1 Preyield mechanisms
  • 4.3.3.2 Postyield mechanisms
  • 4.3.3.3 Yield force
  • 4.3.4 Analysis and Design Methods.
  • 4.3.5 Tests and Engineering Applications
  • 4.4 Piezoelectricity Friction Dampers
  • 4.4.1 Basic Principles
  • 4.4.2 Construction and Design
  • 4.4.3 Mathematical Models
  • 4.4.4 Analysis and Design Methods
  • 4.4.5 Tests and Engineering Applications
  • 4.5 Semiactive Varied Stiffness Damper
  • 4.5.1 Basic Principles
  • 4.5.2 Construction and Design
  • 4.5.3 Mathematical Models
  • 4.5.4 Analysis and Design Methods
  • 4.5.5 Tests and Engineering Applications
  • 4.6 Semiactive Varied Damping Damper
  • 4.6.1 Basic Principles
  • 4.6.2 Construction and Design
  • 4.6.3 Mathematical Model
  • 4.6.4 Analysis and Design Methods
  • 4.6.5 Tests and Engineering Applications
  • 4.7 MRE Device
  • 4.7.1 Basic Principles
  • 4.7.2 Construction and Design
  • 4.7.3 Mathematical Models
  • 4.7.4 Analysis and Design Methods
  • 4.7.4.1 MRE vibration absorber
  • 4.7.4.2 MRE damping device
  • 4.7.5 Tests and Engineering Applications
  • 5 Design and Parameters Optimization on Intelligent Control Devices
  • 5.1 Design and Parameters Optimization on MR Damper
  • 5.1.1 Design on MR Damper
  • 5.1.1.1 Materials selection
  • 5.1.1.2 Design principle
  • 5.1.1.3 Geometry design
  • 5.1.1.4 Magnetic circuit design
  • 5.1.2 Parameters Optimization on MR Damper
  • 5.1.2.1 Geometric optimization
  • 5.1.2.2 Magnetic circuit optimization
  • 5.2 Design and Parameters Optimization of MRE Device
  • 5.2.1 Parameters Optimization for Magnetic Circuit
  • 5.2.2 Magnetic Circuit FEM Simulation
  • 5.3 Design and Parameters Optimization on Active Control
  • 5.3.1 Design and Parameters Optimization Based on Feedback Gain
  • 5.3.2 Design and Parameters Optimization Based on Minimum Energy Principle
  • 5.3.3 Design and Parameters Optimization Based on Fail-Safe Reliability
  • 6 Design and Study on Intelligent Controller
  • 6.1 Design of Intelligent Controller.
  • 6.1.1 The Design of the Acceleration Responses Collection
  • 6.1.2 The Design of the Microcontroller
  • 6.1.2.1 The PWM technology
  • 6.1.2.2 The microcontroller chip
  • 6.1.2.3 The optical coupler
  • 6.2 Experimental Study on Intelligent Controller
  • 7 Dynamic Response Analysis of the Intelligent Control Structure
  • 7.1 Elastic Analysis
  • 7.1.1 Mathematical Model of Structures
  • 7.1.2 Determination of the Control Force of the MR Damper
  • 7.1.3 Numerical Analysis
  • 7.2 Elasto-Plastic Analysis Method
  • 7.2.1 Restoring Force Model
  • 7.2.2 Processing of Turning Points
  • 7.2.2.1 Determination of p for the first kind of turning point
  • 7.2.2.2 Determination of p for the second kind of turning point
  • 7.2.2.3 Determination of p of the third kind of turning point
  • 7.2.3 Elasto-Plastic Stiffness Matrix
  • 7.3 Dynamic Response Analysis by SIMULINK
  • 7.3.1 Simulation of the Controlled Structure
  • 7.3.2 Numerical Analysis
  • 8 Example and Program Analysis
  • 8.1 Dynamic Analysis on Frame Structure With MR Dampers
  • 8.1.1 Structural and Damper Parameters
  • 8.1.2 Semiactive Control Strategy
  • 8.1.3 Results and Analysis
  • 8.2 Dynamic Analysis on Long-Span Structure With MR Dampers
  • 8.2.1 Parameters and Modeling
  • 8.2.2 Wind Load Simulation
  • 8.2.3 Semiactive Control Strategy
  • 8.2.4 Results and Analysis
  • 8.3 Dynamic Analysis on Platform With MRE Devices
  • 8.3.1 Modeling and Parameters
  • 8.3.2 Semiactive Control Strategy
  • 8.3.3 Results and Analysis
  • 8.4 SIMULINK Analysis Example
  • 8.4.1 The SIMULINK Example of the Structure Without Dampers
  • 8.4.2 The SIMULINK Example of the Controlled Structure
  • 8.5 Particle Swarm Optimization Control Example
  • 8.5.1 Structural and Damper Parameters
  • 8.5.2 The PSO Optimization Control
  • 8.5.3 Results and Analysis
  • 8.6 Active Control Example
  • 8.6.1 Modeling and Parameters.
  • 8.6.2 Active Control Strategy
  • 8.6.3 Results and Analysis
  • References
  • Index
  • Back Cover.