Radio frequency digital to analog converters implementation in nanoscale CMOS
With the proliferation of wireless networks, there is a need for more compact, low-cost, power efficient transmitters that are capable of supporting the various communication standards, including Bluetooth, WLAN, GSM/EDGE, WCDMA and 4G of 3GPP cellular. This book describes a novel idea of RF digital...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Boston, MA :
Elsevier
[2017]
|
Edición: | First edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630439106719 |
Tabla de Contenidos:
- Front Cover
- Radio-Frequency Digital-to-Analog Converters: Implementation in Nanoscale CMOS
- Copyright
- Contents
- Preface
- Acknowledgment
- Acronyms
- Chapter 1: Introduction
- 1.1 The Conventional RF Radio
- 1.2 Motivation
- 1.3 The Book Objectives
- 1.3.1 System Simulation of WCDMA Baseband Data
- 1.3.2 Some Important Figures-of-Merit in RF Transmitters
- 1.4 Analog Versus Digital RF Transmitters
- 1.5 Analog-Intensive RF Transmitters
- 1.6 Digitally Intensive RF Transmitters
- 1.7 New Paradigm of RF Design in Nanometer-Scale CMOS
- 1.8 All-Digital Polar Transmitter
- 1.9 All-Digital I/Q Transmitter
- 1.10 Conclusion
- 1.11 Book Outline
- Chapter 2: Digital polar transmitter architecture
- 2.1 Introduction to Narrowband Polar Transmitters
- 2.1.1 Motivation
- 2.1.1.1 Small-signal polar transmitter
- 2.1.1.2 Motivation for the digitally intensive amplitude path
- 2.1.2 Contrast With Conventional Analog Approaches
- 2.2 Overview of the RFDAC-Based Polar Transmitter Architecture
- 2.2.1 Overview of the DPA
- 2.2.2 DCO Operating Frequency and CKV Clock
- 2.3 Details of Phase Modulation
- 2.4 Design Challenges for the Small-Signal Polar Transmitter
- 2.4.1 DCO Phase Noise
- 2.4.2 DCO Pulling and Pushing
- 2.4.3 VGA/DPA Nonlinearity
- 2.4.4 Amplitude-Phase Path Delay Mismatch
- 2.4.5 Amplitude-Phase Path Transfer Function Mismatch
- 2.4.6 Amplitude Path DC Offset
- 2.4.7 Amplitude Path Dynamic Range Limitations
- 2.4.8 Amplitude Path DAC Mismatches
- 2.4.9 Additional Distortions in the DPA (DAC/Mixer)
- Chapter 3: Digital baseband of the polar transmitter
- 3.1 Overview of the TX Digital Baseband
- 3.1.1 Pulse Shaping Filter
- 3.1.2 Resampler
- 3.1.2.1 Need for a resampler
- 3.1.2.2 Implementation
- 3.1.3 CORDIC
- 3.2 Predistortion Module
- 3.2.1 Overview
- 3.2.2 Principle of Operation.
- 3.2.2.1 Adaptive interpolation
- 3.2.2.2 Dynamic LUT inversion
- 3.2.3 Analysis of the Quantization Effects
- 3.3 Predistortion Self-Calibration
- 3.3.1 Effect of Temperature Variations on Predistortion
- 3.4 Interpolative Filter
- 3.5 Polar Bandwidth Expansion
- Chapter 4: RF front-end (RFDAC) of the polar transmitter
- 4.1 Overview of the RF Front-End
- 4.2 Σ∆ Amplitude Modulation
- 4.2.1 Σ∆ Overview
- 4.2.2 Digital Design
- 4.2.3 Transfer Function and Spectrum
- 4.3 Digital Pre-PA
- 4.3.1 Overview of DPA Functionality
- 4.3.2 Analysis of DPA Quantization Noise
- 4.3.3 DPA Structural Design
- 4.4 DPA Transistor Mismatches
- 4.4.1 Amplitude Mismatch
- 4.4.2 Phase Mismatch
- 4.5 Key Categories of Mismatches and DEM
- 4.5.1 Key Categories
- 4.5.1.1 MSB (4x) transistor mismatch
- 4.5.1.2 Unit (1x) transistor mismatch
- 4.5.1.3 Systematic mismatch between 1x and 4x transistors
- 4.5.2 Simulation-Based Specifications
- 4.5.3 Dynamic Element Matching
- 4.5.4 Measurement Results
- 4.6 Clock Delay Alignment
- 4.6.1 Explanation of the Problem
- 4.6.2 Self-Calibration and Compensation Mechanism
- 4.7 Analysis of Parasitic Coupling
- 4.7.1 Possible Coupling Paths
- 4.7.2 A Novel Method of Characterizing Σ∆ Parasitic Coupling Using Idle-Tones
- 4.7.3 Relationship Between Idle Tones and Σ∆ Parasitic Coupling
- Chapter 5: Simulation and measurement results of the polar transmitter
- 5.1 Simulation Results
- 5.2 Measurement Results
- 5.2.1 Predistortion
- 5.2.2 Transmitter Close-In Performance
- 5.2.3 Transmitter Wideband Noise Performance
- 5.2.4 Performance Comparison
- 5.3 Conclusion
- Chapter 6: Idea of all-digital I/Q modulator
- 6.1 Concept of Digital I/Q Transmitter
- 6.2 Orthogonal Summing Operation of RFDAC
- 6.3 Conclusion
- Chapter 7: Orthogonal summation: A 2x3-bit all-digital I/Q RFDAC.
- 7.1 Circuit Building Blocks of Digital I/Q Modulator
- 7.1.1 Digitally Controlled Oscillator
- 7.1.2 Divide-By-Two Circuit
- 7.1.3 25% Duty Cycle generator
- 7.1.4 Sign Bit Circuit
- 7.1.5 Implicit Mixer Circuit
- 7.1.6 2x3-Bit I/Q Switch Array Circuits
- 7.2 Measurement Results
- 7.3 Conclusion
- Chapter 8: Toward high-resolution RFDAC: The system design perspective
- 8.1 System Design Considerations
- 8.2 Conclusion
- Chapter 9: Differential I/Q DPA and power-combining network
- 9.1 Idealized Power Combiner With Different DRACs
- 9.2 A Differential I/Q Class-E-Based Power Combiner
- 9.3 Efficiency of I/Q RFDAC
- 9.4 Effect of Rise/Fall Time and Duty Cycle
- 9.5 Efficiency and Noise at Back-Off Levels
- 9.6 Design an Efficient Balun for Power Combiner
- 9.7 Conclusion
- Chapter 10: A wideband 2x13-bit all-digital I/Q RFDAC
- 10.1 Clock Input Transformer
- 10.2 High-Speed Rail-to-Rail Differential Dividers
- 10.3 Complementary Quadrature Sign Bit
- 10.4 Differential Quadrature 25% Duty Cycle Generator
- 10.5 Floorplanning of 2x 13-Bit DRAC
- 10.6 Thermometer Encoders of 3-to-7 and 4-to-15
- 10.7 DRAC Unit Cell: MSB and LSB
- 10.8 MSB/LSB Selection Choices
- 10.9 Digital I/Q Calibration and DPD Techniques
- 10.9.1 IQ Image and Leakage Suppression
- 10.9.2 DPD Based on AM-AM and AM-PM Profiles
- 10.9.3 DPD Based on I/Q Code Mapping
- 10.9.4 DPD Required Memory and Time
- 10.9.5 DPD Effectiveness Against the Temperatureand Aging
- 10.9.6 Verification of DPD I/Q Code Mapping
- 10.10 Conclusion
- Chapter 11: Measurement results of the 2x13-bit I/Q RFDAC
- 11.1 Measurement Setup
- 11.2 Static Measurement Results
- 11.3 Dynamic Measurement Results
- 11.3.1 LO Leakage and IQ Image Suppression of I/Q RFDAC
- 11.3.2 The RFDAC's Linearity Using AM-AM/AM-PM Profiles.
- 11.3.3 The RFDAC's Linearity Using Constellation Mapping
- 11.4 Conclusion
- Chapter 12: Future of RFDAC
- 12.1 The Outcome
- 12.2 Some Suggestions for Future Developments
- 12.3 Future Trends
- Appendix A: Appendix for the polar transmitter
- A.1 EDGE Modulation
- A.1.1 Symbol Mapping and Rotation
- A.1.2 Pulse Shaping Filter and Modulation
- A.2 RF System Specifications for the EDGE Transmitter
- A.3 Details of the Simulation Model
- A.3.1 Digital Amplitude and Phase Data Generation
- A.3.2 RF Front-End Model
- Appendix B: Appendix for I/Q RFDAC
- B.1 Universal Asynchronous Receiver/Transmitter
- B.2 Matching Network Equations
- B.3 AM-AM/AM-PM Relationship
- B.4 DPD Bandwidth Expansion
- References
- Index
- Back Cover.