Nonparametric finance
An Introduction to Machine Learning in Finance, With Mathematical Background, Data Visualization, and R Nonparametric function estimation is an important part of machine learning, which is becoming increasingly important in quantitative finance. Nonparametric Finance provides graduate students and f...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
Wiley
2018.
|
Edición: | 1st edition |
Colección: | Wiley series in probability and statistics.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630366406719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- Chapter 1 Introduction
- 1.1 Statistical Finance
- 1.2 Risk Management
- 1.3 Portfolio Management
- 1.4 Pricing of Securities
- Part I Statistical Finance
- Chapter 2 Financial Instruments
- 2.1 Stocks
- 2.1.1 Stock Indexes
- 2.1.1.1 Definition of a Stock Index
- 2.1.1.2 Uses of Stock Indexes
- 2.1.1.3 Examples of Stock Indexes
- 2.1.2 Stock Prices and Returns
- 2.1.2.1 Initial Price Data
- 2.1.2.2 Sampling of Prices
- 2.1.2.3 Stock Returns
- 2.2 Fixed Income Instruments
- 2.2.1 Bonds
- 2.2.2 Interest Rates
- 2.2.2.1 Definitions of Interest Rates
- 2.2.2.2 The Risk Free Rate
- 2.2.3 Bond Prices and Returns
- 2.3 Derivatives
- 2.3.1 Forwards and Futures
- 2.3.1.1 Forwards
- 2.3.1.2 Futures
- 2.3.2 Options
- 2.3.2.1 Calls and Puts
- 2.3.2.2 Applications of Options
- 2.3.2.3 Exotic Options
- 2.4 Data Sets
- 2.4.1 Daily S&
- P 500 Data
- 2.4.2 Daily S&
- P 500 and Nasdaq‐100 Data
- 2.4.3 Monthly S&
- P 500, Bond, and Bill Data
- 2.4.4 Daily US Treasury 10 Year Bond Data
- 2.4.5 Daily S&
- P 500 Components Data
- Chapter 3 Univariate Data Analysis
- 3.1 Univariate Statistics
- 3.1.1 The Center of a Distribution
- 3.1.1.1 The Mean and the Conditional Mean
- 3.1.1.2 The Median and the Conditional Median
- 3.1.1.3 The Mode and the Conditional Mode
- 3.1.2 The Variance and Moments
- 3.1.2.1 The Variance and the Conditional Variance
- 3.1.2.2 The Upper and Lower Partial Moments
- 3.1.2.3 The Upper and Lower Conditional Moments
- 3.1.3 The Quantiles and the Expected Shortfalls
- 3.1.3.1 The Quantiles and the Conditional Quantiles
- 3.1.3.2 The Expected Shortfalls
- 3.2 Univariate Graphical Tools
- 3.2.1 Empirical Distribution Function Based Tools
- 3.2.1.1 The Empirical Distribution Function
- 3.2.1.2 The Tail Plots.
- 3.2.1.3 Regression Plots of Tails
- 3.2.1.4 The Empirical Quantile Function
- 3.2.2 Density Estimation Based Tools
- 3.2.2.1 The Histogram
- 3.2.2.2 The Kernel Density Estimator
- 3.3 Univariate Parametric Models
- 3.3.1 The Normal and Log‐normal Models
- 3.3.1.1 The Normal and Log‐normal Distributions
- 3.3.1.2 Modeling Stock Prices
- 3.3.2 The Student Distributions
- 3.3.2.1 Properties of Student Distributions
- 3.3.2.2 Estimation of the Parameters of a Student Distribution
- 3.4 Tail Modeling
- 3.4.1 Modeling and Estimating Excess Distributions
- 3.4.1.1 Modeling Excess Distributions
- 3.4.1.2 Estimation
- 3.4.2 Parametric Families for Excess Distributions
- 3.4.2.1 The Exponential Distributions
- 3.4.2.2 The Pareto Distributions
- 3.4.2.3 The Gamma Distributions
- 3.4.2.4 The Generalized Pareto Distributions
- 3.4.2.5 The Weibull Distributions
- 3.4.2.6 A Three Parameter Family
- 3.4.3 Fitting the Models to Return Data
- 3.4.3.1 S&
- P 500 Daily Returns: Maximum Likelihood
- 3.4.3.2 Tail Index Estimation for S&
- P 500 Components
- 3.5 Asymptotic Distributions
- 3.5.1 The Central Limit Theorems
- 3.5.1.1 Sums of Independent Random Variables
- 3.5.1.2 Sums of Independent and Identically Distributed Random Variables
- 3.5.1.3 Sums of Dependent Random Variables
- 3.5.2 The Limit Theorems for Maxima
- 3.5.2.1 Weak Convergence of Maxima
- 3.5.2.2 Extreme Value Distributions
- 3.5.2.3 Convergence to an Extreme Value Distribution
- 3.5.2.4 Generalized Pareto Distributions
- 3.5.2.5 Convergence to a Generalized Pareto Distribution
- 3.6 Univariate Stylized Facts
- Chapter 4 Multivariate Data Analysis
- 4.1 Measures of Dependence
- 4.1.1 Correlation Coefficients
- 4.1.1.1 Linear Correlation
- 4.1.1.2 Spearman's Rank Correlation
- 4.1.1.3 Kendall's Rank Correlation.
- 4.1.1.4 Relations between the Correlation Coefficients
- 4.1.2 Coefficients of Tail Dependence
- 4.1.2.1 Tail Coefficients in Terms of the Copula
- 4.1.2.2 Estimation of Tail Coefficients
- 4.1.2.3 Tail Coefficients for Parametric Families
- 4.2 Multivariate Graphical Tools
- 4.2.1 Scatter Plots
- 4.2.2 Correlation Matrix: Multidimensional Scaling
- 4.2.2.1 Correlation Matrix
- 4.2.2.2 Multidimensional Scaling
- 4.3 Multivariate Parametric Models
- 4.3.1 Multivariate Gaussian Distributions
- 4.3.2 Multivariate Student Distributions
- 4.3.3 Normal Variance Mixture Distributions
- 4.3.4 Elliptical Distributions
- 4.4 Copulas
- 4.4.1 Standard Copulas
- 4.4.1.1 Finding the Copula of a Multivariate Distribution
- 4.4.1.2 Constructing a Multivariate Distribution from a Copula
- 4.4.2 Nonstandard Copulas
- 4.4.3 Sampling from a Copula
- 4.4.3.1 Simulation from a Copula
- 4.4.3.2 Transforming the Sample
- 4.4.3.3 Transforming the Sample by Estimating the Margins
- 4.4.3.4 Empirical Copula
- 4.4.3.5 Maximum Likelihood Estimation
- 4.4.4 Examples of Copulas
- 4.4.4.1 The Gaussian Copulas
- 4.4.4.2 The Student Copulas
- 4.4.4.3 Other Copulas
- 4.4.4.4 Empirical Results
- Chapter 5 Time Series Analysis
- 5.1 Stationarity and Autocorrelation
- 5.1.1 Strict Stationarity
- 5.1.1.1 Random Walk
- 5.1.2 Covariance Stationarity and Autocorrelation
- 5.1.2.1 Autocovariance and Autocorrelation for Scalar Time Series
- 5.1.2.2 Autocovariance for Vector Time Series
- 5.2 Model Free Estimation
- 5.2.1 Descriptive Statistics for Time Series
- 5.2.2 Markov Models
- 5.2.3 Time Varying Parameter
- 5.2.3.1 Local Likelihood
- 5.2.3.2 Local Least Squares
- 5.2.3.3 Time Varying Estimators for the Excess Distribution
- 5.3 Univariate Time Series Models
- 5.3.1 Prediction and Conditional Expectation
- 5.3.2 ARMA Processes.
- 5.3.2.1 Innovation Processes
- 5.3.2.2 Moving Average Processes
- 5.3.2.3 Autoregressive Processes
- 5.3.2.4 ARMA Processes
- 5.3.3 Conditional Heteroskedasticity Models
- 5.3.3.1 ARCH Processes
- 5.3.3.2 GARCH Processes
- 5.3.3.3 ARCH(∞) Model
- 5.3.3.4 Asymmetric GARCH Processes
- 5.3.3.5 The Moment Generating function
- 5.3.3.6 Parameter Estimation
- 5.3.3.7 Fitting the GARCH(1,1) Model
- 5.3.4 Continuous Time Processes
- 5.3.4.1 The Brownian Motion
- 5.3.4.2 Diffusion Processes and Itô's Lemma
- 5.3.4.3 The Geometric Brownian Motion
- 5.3.4.4 Girsanov's Theorem
- 5.4 Multivariate Time Series Models
- 5.4.1 MGARCH Models
- 5.4.2 Covariance in MGARCH Models
- 5.5 Time Series Stylized Facts
- Chapter 6 Prediction
- 6.1 Methods of Prediction
- 6.1.1 Moving Average Predictors
- 6.1.1.1 One‐Sided Moving Average
- 6.1.1.2 Exponential Moving Average
- 6.1.2 State Space Predictors
- 6.1.2.1 Linear Regression
- 6.1.2.2 Kernel Regression
- 6.2 Forecast Evaluation
- 6.2.1 The Sum of Squared Prediction Errors
- 6.2.1.1 Out‐of‐Sample Sum of Squares
- 6.2.1.2 In‐Sample Sum of Squares
- 6.2.1.3 Visual Diagnostics
- 6.2.2 Testing the Prediction Accuracy
- 6.2.2.1 Diebold-Mariano Test
- 6.2.2.2 Tests Using Sample Correlation and Covariance
- 6.3 Predictive Variables
- 6.3.1 Risk Indicators
- 6.3.1.1 Default Spread
- 6.3.1.2 Credit Spreads
- 6.3.1.3 Volatility Indexes
- 6.3.2 Interest Rate Variables
- 6.3.2.1 Term Spread
- 6.3.2.2 Real Yield
- 6.3.3 Stock Market Indicators
- 6.3.3.1 Dividend Price Ratio and Dividend Yield
- 6.3.3.2 Valuation in Stock Markets
- 6.3.3.3 Relative Valuation
- 6.3.4 Sentiment Indicators
- 6.3.4.1 Purchasing Managers Index
- 6.3.4.2 Investor and Consumer Sentiment
- 6.3.5 Technical Indicators
- 6.4 Asset Return Prediction
- 6.4.1 Prediction of S&
- P 500 Returns
- 6.4.1.1 S&.
- P 500 Returns
- 6.4.1.2 Linear Regression for Predicting S&
- P 500 Returns
- 6.4.2 Prediction of 10‐Year Bond Returns
- 6.4.2.1 10‐Year Bond Returns
- 6.4.2.2 Linear Regression for Predicting 10‐Year Bond Returns
- Part II Risk Management
- Chapter 7 Volatility Prediction
- 7.1 Applications of Volatility Prediction
- 7.1.1 Variance and Volatility Trading
- 7.1.2 Covariance Trading
- 7.1.3 Quantile Estimation
- 7.1.4 Portfolio Selection
- 7.1.5 Option Pricing
- 7.2 Performance Measures for Volatility Predictors
- 7.3 Conditional Heteroskedasticity Models
- 7.3.1 GARCH Predictor
- 7.3.1.1 Predicting the Squared Returns
- 7.3.1.2 Predicting the Realized Volatility
- 7.3.1.3 S&
- P 500 Volatility Prediction with GARCH(1,1)
- 7.3.2 ARCH Predictor
- 7.3.2.1 Predicting the Squared Returns
- 7.3.2.2 S&
- P 500 Volatility Prediction with ARCH(p)
- 7.4 Moving Average Methods
- 7.4.1 Sequential Sample Variance
- 7.4.2 Exponentially Weighted Moving Average
- 7.4.2.1 Asymmetric Exponentially Weighted Moving Average
- 7.5 State Space Predictors
- 7.5.1 Linear Regression Predictor
- 7.5.1.1 Prediction with Volatility and Mean
- 7.5.1.2 Prediction with Past Squared Returns
- 7.5.2 Kernel Regression Predictor
- Chapter 8 Quantiles and Value‐at‐Risk
- 8.1 Definitions of Quantiles
- 8.2 Applications of Quantiles
- 8.2.1 Reserve Capital
- 8.2.1.1 Value‐at‐Risk of a Portfolio
- 8.2.1.2 Decomposition of the Loss of a Portfolio
- 8.2.1.3 Losses over Several Periods
- 8.2.2 Margin Requirements
- 8.2.3 Quantiles as a Risk Measure
- 8.3 Performance Measures for Quantile Estimators
- 8.3.1 Measuring the Probability of Exceedances
- 8.3.1.1 Cross‐Validation
- 8.3.1.2 Probability Differences
- 8.3.1.3 Confidence of the Performance Measure
- 8.3.1.4 Probability Differences Over All Time Intervals.
- 8.3.2 A Loss Function for Quantile Estimation.