Op amps for everyone
Op Amps for Everyone, Fifth Edition, will help you design circuits that are reliable, have low power consumption, and can be implemented in as small a size as possible at the lowest possible cost. It bridges the gap between the theoretical and practical by giving pragmatic solutions using components...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Oxford, [England] ; Cambridge, [Massachusetts] :
Newnes
[2018].
|
Edición: | Fifth edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630345406719 |
Tabla de Contenidos:
- Front Cover
- Op Amps for Everyone
- Op Amps for Everyone
- Copyright
- Dedication
- Contents
- List of Figures
- List of Tables
- Foreword
- The Changing World
- 1 - The Op Amp's Place in the World
- 1.1 The Problem
- 1.2 The Solution
- 1.3 The Birth of the Op Amp
- 1.3.1 The Vacuum Tube Era
- 1.3.2 The Transistor Era
- 1.3.3 The IC Era
- Reference
- 2 - Development of the Ideal Op Amp Equations
- 2.1 Introduction
- 2.2 Ideal Op Amp Assumptions
- 2.3 The Noninverting Op Amp
- 2.4 The Inverting Op Amp
- 2.5 The Adder
- 2.6 The Differential Amplifier
- 2.7 Complex Feedback Networks
- 2.8 Impedance Matching Amplifiers
- 2.9 Capacitors
- 2.10 Why an Ideal Op Amp Would Destroy the Known Universe
- 2.11 Summary
- 3 - Single-Supply Op Amp Design Techniques
- 3.1 Single Supply Versus Dual Supply
- 4 - DC-Coupled Single-Supply Op Amp Design Techniques
- 4.1 An Introduction to DC-Coupled, Single-Supply Circuits
- 4.2 Simple Application to Get You Started
- 4.3 Circuit Analysis
- 4.4 Simultaneous Equations
- 4.4.1 Case 1: VOUT=+mVIN+b
- 4.4.2 Case 2: VOUT=+mVIN−b
- 4.4.3 Case 3: VOUT=−mVIN+b
- 4.4.4 Case 4: VOUT=−mVIN−b
- 4.5 Summary
- 5 - On Beyond Case 4
- 5.1 A Continuum of Applications
- 5.2 Noninverting Attenuator With Zero Offset
- 5.3 Noninverting Attenuation With Positive Offset
- 5.4 Noninverting Attenuation With Negative Offset
- 5.5 Inverting Attenuation With Zero Offset
- 5.6 Inverting Attenuation With Positive Offset
- 5.7 Inverting Attenuation With Negative Offset
- 5.8 Noninverting Buffer
- 5.9 Signal Chain Design
- 6 - Feedback and Stability Theory
- 6.1 Introduction to Feedback Theory
- 6.2 Block Diagram Math and Manipulations
- 6.3 Feedback Equation and Stability
- 6.4 Bode Analysis of Feedback Circuits
- 6.5 Bode Analysis Applied to Op Amps.
- 6.6 Loop Gain Plots Are the Key to Understanding Stability
- 6.7 The Second-Order Equation and Ringing/Overshoot Predictions
- References
- 7 - Development of the Nonideal Op Amp Equations
- 7.1 Introduction
- 7.2 Review of the Canonical Equations
- 7.3 Noninverting Op Amps
- 7.4 Inverting Op Amps
- 7.5 Differential Op Amps
- 7.6 Are You Smarter Than an Op Amp?
- 8 - Voltage-Feedback Op Amp Compensation
- 8.1 Introduction
- 8.2 Internal Compensation
- 8.3 External Compensation, Stability, and Performance
- 8.4 Dominant-Pole Compensation
- 8.5 Gain Compensation
- 8.6 Lead Compensation
- 8.7 Compensated Attenuator Applied to Op Amp
- 8.8 Lead-Lag Compensation
- 8.9 Comparison of Compensation Schemes
- 8.10 Conclusions
- 9 - Current-Feedback Op Amps
- 9.1 Introduction
- 9.2 Current-Feedback Amplifier Model
- 9.3 Development of the Stability Equation
- 9.4 The Noninverting Current-Feedback Amplifier
- 9.5 The Inverting Current-Feedback Amplifier
- 9.6 Stability Analysis
- 9.7 Selection of the Feedback Resistor
- 9.8 Stability and Input Capacitance
- 9.9 Stability and Feedback Capacitance
- 9.10 Compensation of CF and CG
- 9.11 Summary
- 10 - Voltage- and Current-Feedback Op Amp Comparison
- 10.1 Introduction
- 10.2 Precision
- 10.3 Bandwidth
- 10.4 Stability
- 10.5 Impedance
- 10.6 Equation Comparison
- 11 - Fully Differential Op Amps
- 11.1 Introduction
- 11.2 What Does "Fully Differential" Mean?
- 11.3 How is the Second Output Used?
- 11.4 Differential Gain Stages
- 11.5 Single-Ended to Differential Conversion
- 11.6 A New Function
- 11.7 Conceptualizing the Vocm Input
- 11.8 Instrumentation
- 11.9 Filter Circuits
- 11.9.1 Single-Pole Filters
- 11.9.2 Double-Pole Filters
- 11.9.3 Multiple Feedback Filters
- 11.9.4 Biquad Filter
- 12 - Different Types of Op Amps
- 12.1 Introduction.
- 12.2 Uncompensated/Undercompensated Voltage-Feedback Op Amps
- 12.3 Instrumentation Amplifier
- 12.4 Difference Amplifier
- 12.5 Buffer Amplifiers
- 13 - Troubleshooting-What to Do When Things Go Wrong
- 13.1 Introduction
- 13.2 Simple Things First-Check the Power!
- 13.3 Do Not Forget That Enable Pin
- 13.4 Check the DC Operating Point
- 13.5 The Gain Is Wrong
- 13.6 The Output Is Noisy
- 13.6.1 Conducted Emissions and Radiated Emissions
- 13.6.2 Radiated Susceptibility
- 13.6.3 Conducted Susceptibility
- 13.7 The Output Has an Offset
- 13.8 Conclusion
- 14 - Interfacing a Transducer to an Analog to Digital Converter
- 14.1 Introduction
- 14.2 System Information
- 14.3 Power Supply Information
- 14.4 Input Signal Characteristics
- 14.5 Analog to Digital Converter Characteristics
- 14.6 Interface Characteristics
- 14.7 Architectural Decisions
- 14.8 Conclusions
- 15 - Interfacing D/A Converters to Loads
- 15.1 Introduction
- 15.2 Load Characteristics
- 15.2.1 DC Loads
- 15.2.2 AC Loads
- 15.3 Understanding the D/A Converter and Its Specifications
- 15.3.1 Types of D/A Converters-Understanding the Trade-offs
- 15.3.2 The Resistor Ladder D/A Converter
- 15.3.3 The Weighted Resistor D/A Converter
- 15.3.4 The R/2R D/A Converter
- 15.3.5 The Sigma Delta D/A Converter
- 15.4 D/A Converter Error Budget
- 15.4.1 Accuracy Versus Resolution
- 15.4.2 DC Application Error Budget
- 15.4.3 AC Application Error Budget
- 15.4.3.1 Total Harmonic Distortion
- 15.4.3.2 Dynamic Range
- 15.4.4 RF Application Error Budget
- 15.5 D/A Converter Errors and Parameters
- 15.5.1 DC Errors and Parameters
- 15.5.1.1 Offset Error
- 15.5.1.2 Gain Error
- 15.5.1.3 Differential Nonlinearity Error
- 15.5.1.4 Integral Nonlinearity Error
- 15.5.1.5 Power Supply Rejection Ratio
- 15.5.2 AC Application Errors and Parameters.
- 15.5.2.1 THD+N
- 15.5.2.2 Signal-to-Noise and Distortion
- 15.5.2.3 Effective Number of Bits
- 15.5.2.4 Spurious-Free Dynamic Range
- 15.5.2.5 Intermodulation Distortion
- 15.5.2.6 Settling Time
- 15.6 Compensating for DAC Capacitance
- 15.7 Increasing Op Amp Buffer Amplifier Current and Voltage
- 15.7.1 Current Boosters
- 15.7.2 Voltage Boosters
- 15.7.3 Power Boosters
- 15.7.4 Single-Supply Operation and DC Offsets
- 16 - Active Filter Design Techniques
- 16.1 Introduction
- 16.2 Fundamentals of Low-Pass Filters
- 16.2.1 Butterworth Low-Pass Filters
- 16.2.2 Tschebyscheff Low-Pass Filters
- 16.2.3 Bessel Low-Pass Filters
- 16.2.4 Quality Factor Q
- 16.2.5 Summary
- 16.3 Low-Pass Filter Design
- 16.3.1 First-Order Low-Pass Filter
- 16.3.2 Second-Order Low-Pass Filter
- 16.3.2.1 Sallen-Key Topology
- 16.3.2.2 Multiple Feedback Low Pass Filter Topology
- 16.3.3 Higher-Order Low-Pass Filters
- 16.3.3.1 First Filter
- 16.3.3.2 Second Filter
- 16.3.3.3 Third Filter
- 16.4 High-Pass Filter Design
- 16.4.1 First-Order High-Pass Filter
- 16.4.2 Second-Order High-Pass Filter
- 16.4.2.1 Sallen-Key Topology
- 16.4.2.2 Multiple Feedback High Pass Filter Topology
- 16.4.3 Higher-Order High-Pass Filter
- 16.4.3.1 First Filter
- 16.4.3.2 Second Filter
- 16.5 Band-Pass Filter Design
- 16.5.1 Second-Order Band-Pass Filter
- 16.5.1.1 Sallen-Key Topology
- 16.5.1.2 Multiple Feedback Band Pass Filter Topology
- 16.5.2 Fourth-Order Band-Pass Filter (Staggered Tuning)
- 16.6 Band-Rejection Filter Design
- 16.6.1 Active Twin-T Filter
- 16.6.2 Active Wien-Robinson Filter
- 16.7 All-Pass Filter Design
- 16.7.1 First-Order All-Pass Filter
- 16.7.2 Second-Order All-Pass Filter
- 16.7.3 Higher-Order All-Pass Filter
- 16.8 Practical Design Hints
- 16.8.1 Filter Circuit Biasing
- 16.8.2 Capacitor Selection.
- 16.8.3 Component Values
- 16.8.4 Op Amp Selection
- 16.9 Filter Coefficient Tables
- Further Reading
- 17 - Fast, Simple Filter Design
- 17.1 Introduction
- 17.2 Fast, Practical Filter Design
- 17.3 Designing the Filter
- 17.3.1 Low-Pass Filter (Fig. 17.6)
- 17.3.2 High-Pass Filter (Fig. 17.7)
- 17.3.3 Narrow (Single-Frequency) Band-Pass Filter (Fig. 17.8)
- 17.3.4 Wide Band-Pass Filter (Fig. 17.9)
- 17.3.5 Notch (Single-Frequency Rejection) Filter (Fig. 17.10)
- 17.4 Getting the Most Out of a Single Op Amp
- 17.4.1 Three-Pole Low-Pass Filters
- 17.4.2 Three-Pole High-Pass Filters
- 17.4.3 Stagger-Tuned and Multiple-Peak Band-Pass Filters
- 17.4.4 Single-Amplifier Notch and Multiple Notch Filters
- 17.4.5 Combination Band-Pass and Notch Filters
- 17.5 Design Aids
- 17.5.1 Low-Pass, High-Pass, and Band-Pass Filter Design Aids
- 17.5.2 Notch Filter Design Aids
- 17.5.3 Twin-T Design Aids
- 17.6 Summary
- 18 - High-Speed Filters
- 18.1 Introduction
- 18.2 High-Speed Low-Pass Filters
- 18.3 High-Speed High-Pass Filters
- 18.4 High-Speed Band-Pass Filters
- 18.5 High-Speed Notch Filters
- 18.6 10kHz Notch Filter Results
- 18.7 Conclusions
- 19 - Using Op Amps for RF Design
- 19.1 Introduction
- 19.2 Voltage Feedback or Current Feedback?
- 19.3 RF Amplifier Topology
- 19.4 Op Amp Parameters for RF Designers
- 19.4.1 Stage Gain
- 19.4.2 Phase Linearity
- 19.4.3 Frequency Response Peaking
- 19.4.4 −1dB Compression Point
- 19.4.5 Noise Figure
- 19.5 Wireless Systems
- 19.5.1 Broadband Amplifiers
- 19.5.2 IF Amplifiers
- 19.6 High-Speed Analog Input Drive Circuits
- 19.7 Conclusions
- 20 - Designing Low-Voltage Op Amp Circuits
- 20.1 Introduction
- 20.2 Critical Specifications
- 20.2.1 Output Voltage Swing
- 20.2.2 Dynamic Range
- 20.2.3 Input Common-Mode Range
- 20.2.4 Signal-to-Noise Ratio
- 20.3 Summary.
- 21 - Extreme Applications.