Op amps for everyone

Op Amps for Everyone, Fifth Edition, will help you design circuits that are reliable, have low power consumption, and can be implemented in as small a size as possible at the lowest possible cost. It bridges the gap between the theoretical and practical by giving pragmatic solutions using components...

Descripción completa

Detalles Bibliográficos
Otros Autores: Carter, Bruce, author (author), Mancini, Ron, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Oxford, [England] ; Cambridge, [Massachusetts] : Newnes [2018].
Edición:Fifth edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630345406719
Tabla de Contenidos:
  • Front Cover
  • Op Amps for Everyone
  • Op Amps for Everyone
  • Copyright
  • Dedication
  • Contents
  • List of Figures
  • List of Tables
  • Foreword
  • The Changing World
  • 1 - The Op Amp's Place in the World
  • 1.1 The Problem
  • 1.2 The Solution
  • 1.3 The Birth of the Op Amp
  • 1.3.1 The Vacuum Tube Era
  • 1.3.2 The Transistor Era
  • 1.3.3 The IC Era
  • Reference
  • 2 - Development of the Ideal Op Amp Equations
  • 2.1 Introduction
  • 2.2 Ideal Op Amp Assumptions
  • 2.3 The Noninverting Op Amp
  • 2.4 The Inverting Op Amp
  • 2.5 The Adder
  • 2.6 The Differential Amplifier
  • 2.7 Complex Feedback Networks
  • 2.8 Impedance Matching Amplifiers
  • 2.9 Capacitors
  • 2.10 Why an Ideal Op Amp Would Destroy the Known Universe
  • 2.11 Summary
  • 3 - Single-Supply Op Amp Design Techniques
  • 3.1 Single Supply Versus Dual Supply
  • 4 - DC-Coupled Single-Supply Op Amp Design Techniques
  • 4.1 An Introduction to DC-Coupled, Single-Supply Circuits
  • 4.2 Simple Application to Get You Started
  • 4.3 Circuit Analysis
  • 4.4 Simultaneous Equations
  • 4.4.1 Case 1: VOUT=+mVIN+b
  • 4.4.2 Case 2: VOUT=+mVIN−b
  • 4.4.3 Case 3: VOUT=−mVIN+b
  • 4.4.4 Case 4: VOUT=−mVIN−b
  • 4.5 Summary
  • 5 - On Beyond Case 4
  • 5.1 A Continuum of Applications
  • 5.2 Noninverting Attenuator With Zero Offset
  • 5.3 Noninverting Attenuation With Positive Offset
  • 5.4 Noninverting Attenuation With Negative Offset
  • 5.5 Inverting Attenuation With Zero Offset
  • 5.6 Inverting Attenuation With Positive Offset
  • 5.7 Inverting Attenuation With Negative Offset
  • 5.8 Noninverting Buffer
  • 5.9 Signal Chain Design
  • 6 - Feedback and Stability Theory
  • 6.1 Introduction to Feedback Theory
  • 6.2 Block Diagram Math and Manipulations
  • 6.3 Feedback Equation and Stability
  • 6.4 Bode Analysis of Feedback Circuits
  • 6.5 Bode Analysis Applied to Op Amps.
  • 6.6 Loop Gain Plots Are the Key to Understanding Stability
  • 6.7 The Second-Order Equation and Ringing/Overshoot Predictions
  • References
  • 7 - Development of the Nonideal Op Amp Equations
  • 7.1 Introduction
  • 7.2 Review of the Canonical Equations
  • 7.3 Noninverting Op Amps
  • 7.4 Inverting Op Amps
  • 7.5 Differential Op Amps
  • 7.6 Are You Smarter Than an Op Amp?
  • 8 - Voltage-Feedback Op Amp Compensation
  • 8.1 Introduction
  • 8.2 Internal Compensation
  • 8.3 External Compensation, Stability, and Performance
  • 8.4 Dominant-Pole Compensation
  • 8.5 Gain Compensation
  • 8.6 Lead Compensation
  • 8.7 Compensated Attenuator Applied to Op Amp
  • 8.8 Lead-Lag Compensation
  • 8.9 Comparison of Compensation Schemes
  • 8.10 Conclusions
  • 9 - Current-Feedback Op Amps
  • 9.1 Introduction
  • 9.2 Current-Feedback Amplifier Model
  • 9.3 Development of the Stability Equation
  • 9.4 The Noninverting Current-Feedback Amplifier
  • 9.5 The Inverting Current-Feedback Amplifier
  • 9.6 Stability Analysis
  • 9.7 Selection of the Feedback Resistor
  • 9.8 Stability and Input Capacitance
  • 9.9 Stability and Feedback Capacitance
  • 9.10 Compensation of CF and CG
  • 9.11 Summary
  • 10 - Voltage- and Current-Feedback Op Amp Comparison
  • 10.1 Introduction
  • 10.2 Precision
  • 10.3 Bandwidth
  • 10.4 Stability
  • 10.5 Impedance
  • 10.6 Equation Comparison
  • 11 - Fully Differential Op Amps
  • 11.1 Introduction
  • 11.2 What Does "Fully Differential" Mean?
  • 11.3 How is the Second Output Used?
  • 11.4 Differential Gain Stages
  • 11.5 Single-Ended to Differential Conversion
  • 11.6 A New Function
  • 11.7 Conceptualizing the Vocm Input
  • 11.8 Instrumentation
  • 11.9 Filter Circuits
  • 11.9.1 Single-Pole Filters
  • 11.9.2 Double-Pole Filters
  • 11.9.3 Multiple Feedback Filters
  • 11.9.4 Biquad Filter
  • 12 - Different Types of Op Amps
  • 12.1 Introduction.
  • 12.2 Uncompensated/Undercompensated Voltage-Feedback Op Amps
  • 12.3 Instrumentation Amplifier
  • 12.4 Difference Amplifier
  • 12.5 Buffer Amplifiers
  • 13 - Troubleshooting-What to Do When Things Go Wrong
  • 13.1 Introduction
  • 13.2 Simple Things First-Check the Power!
  • 13.3 Do Not Forget That Enable Pin
  • 13.4 Check the DC Operating Point
  • 13.5 The Gain Is Wrong
  • 13.6 The Output Is Noisy
  • 13.6.1 Conducted Emissions and Radiated Emissions
  • 13.6.2 Radiated Susceptibility
  • 13.6.3 Conducted Susceptibility
  • 13.7 The Output Has an Offset
  • 13.8 Conclusion
  • 14 - Interfacing a Transducer to an Analog to Digital Converter
  • 14.1 Introduction
  • 14.2 System Information
  • 14.3 Power Supply Information
  • 14.4 Input Signal Characteristics
  • 14.5 Analog to Digital Converter Characteristics
  • 14.6 Interface Characteristics
  • 14.7 Architectural Decisions
  • 14.8 Conclusions
  • 15 - Interfacing D/A Converters to Loads
  • 15.1 Introduction
  • 15.2 Load Characteristics
  • 15.2.1 DC Loads
  • 15.2.2 AC Loads
  • 15.3 Understanding the D/A Converter and Its Specifications
  • 15.3.1 Types of D/A Converters-Understanding the Trade-offs
  • 15.3.2 The Resistor Ladder D/A Converter
  • 15.3.3 The Weighted Resistor D/A Converter
  • 15.3.4 The R/2R D/A Converter
  • 15.3.5 The Sigma Delta D/A Converter
  • 15.4 D/A Converter Error Budget
  • 15.4.1 Accuracy Versus Resolution
  • 15.4.2 DC Application Error Budget
  • 15.4.3 AC Application Error Budget
  • 15.4.3.1 Total Harmonic Distortion
  • 15.4.3.2 Dynamic Range
  • 15.4.4 RF Application Error Budget
  • 15.5 D/A Converter Errors and Parameters
  • 15.5.1 DC Errors and Parameters
  • 15.5.1.1 Offset Error
  • 15.5.1.2 Gain Error
  • 15.5.1.3 Differential Nonlinearity Error
  • 15.5.1.4 Integral Nonlinearity Error
  • 15.5.1.5 Power Supply Rejection Ratio
  • 15.5.2 AC Application Errors and Parameters.
  • 15.5.2.1 THD+N
  • 15.5.2.2 Signal-to-Noise and Distortion
  • 15.5.2.3 Effective Number of Bits
  • 15.5.2.4 Spurious-Free Dynamic Range
  • 15.5.2.5 Intermodulation Distortion
  • 15.5.2.6 Settling Time
  • 15.6 Compensating for DAC Capacitance
  • 15.7 Increasing Op Amp Buffer Amplifier Current and Voltage
  • 15.7.1 Current Boosters
  • 15.7.2 Voltage Boosters
  • 15.7.3 Power Boosters
  • 15.7.4 Single-Supply Operation and DC Offsets
  • 16 - Active Filter Design Techniques
  • 16.1 Introduction
  • 16.2 Fundamentals of Low-Pass Filters
  • 16.2.1 Butterworth Low-Pass Filters
  • 16.2.2 Tschebyscheff Low-Pass Filters
  • 16.2.3 Bessel Low-Pass Filters
  • 16.2.4 Quality Factor Q
  • 16.2.5 Summary
  • 16.3 Low-Pass Filter Design
  • 16.3.1 First-Order Low-Pass Filter
  • 16.3.2 Second-Order Low-Pass Filter
  • 16.3.2.1 Sallen-Key Topology
  • 16.3.2.2 Multiple Feedback Low Pass Filter Topology
  • 16.3.3 Higher-Order Low-Pass Filters
  • 16.3.3.1 First Filter
  • 16.3.3.2 Second Filter
  • 16.3.3.3 Third Filter
  • 16.4 High-Pass Filter Design
  • 16.4.1 First-Order High-Pass Filter
  • 16.4.2 Second-Order High-Pass Filter
  • 16.4.2.1 Sallen-Key Topology
  • 16.4.2.2 Multiple Feedback High Pass Filter Topology
  • 16.4.3 Higher-Order High-Pass Filter
  • 16.4.3.1 First Filter
  • 16.4.3.2 Second Filter
  • 16.5 Band-Pass Filter Design
  • 16.5.1 Second-Order Band-Pass Filter
  • 16.5.1.1 Sallen-Key Topology
  • 16.5.1.2 Multiple Feedback Band Pass Filter Topology
  • 16.5.2 Fourth-Order Band-Pass Filter (Staggered Tuning)
  • 16.6 Band-Rejection Filter Design
  • 16.6.1 Active Twin-T Filter
  • 16.6.2 Active Wien-Robinson Filter
  • 16.7 All-Pass Filter Design
  • 16.7.1 First-Order All-Pass Filter
  • 16.7.2 Second-Order All-Pass Filter
  • 16.7.3 Higher-Order All-Pass Filter
  • 16.8 Practical Design Hints
  • 16.8.1 Filter Circuit Biasing
  • 16.8.2 Capacitor Selection.
  • 16.8.3 Component Values
  • 16.8.4 Op Amp Selection
  • 16.9 Filter Coefficient Tables
  • Further Reading
  • 17 - Fast, Simple Filter Design
  • 17.1 Introduction
  • 17.2 Fast, Practical Filter Design
  • 17.3 Designing the Filter
  • 17.3.1 Low-Pass Filter (Fig. 17.6)
  • 17.3.2 High-Pass Filter (Fig. 17.7)
  • 17.3.3 Narrow (Single-Frequency) Band-Pass Filter (Fig. 17.8)
  • 17.3.4 Wide Band-Pass Filter (Fig. 17.9)
  • 17.3.5 Notch (Single-Frequency Rejection) Filter (Fig. 17.10)
  • 17.4 Getting the Most Out of a Single Op Amp
  • 17.4.1 Three-Pole Low-Pass Filters
  • 17.4.2 Three-Pole High-Pass Filters
  • 17.4.3 Stagger-Tuned and Multiple-Peak Band-Pass Filters
  • 17.4.4 Single-Amplifier Notch and Multiple Notch Filters
  • 17.4.5 Combination Band-Pass and Notch Filters
  • 17.5 Design Aids
  • 17.5.1 Low-Pass, High-Pass, and Band-Pass Filter Design Aids
  • 17.5.2 Notch Filter Design Aids
  • 17.5.3 Twin-T Design Aids
  • 17.6 Summary
  • 18 - High-Speed Filters
  • 18.1 Introduction
  • 18.2 High-Speed Low-Pass Filters
  • 18.3 High-Speed High-Pass Filters
  • 18.4 High-Speed Band-Pass Filters
  • 18.5 High-Speed Notch Filters
  • 18.6 10kHz Notch Filter Results
  • 18.7 Conclusions
  • 19 - Using Op Amps for RF Design
  • 19.1 Introduction
  • 19.2 Voltage Feedback or Current Feedback?
  • 19.3 RF Amplifier Topology
  • 19.4 Op Amp Parameters for RF Designers
  • 19.4.1 Stage Gain
  • 19.4.2 Phase Linearity
  • 19.4.3 Frequency Response Peaking
  • 19.4.4 −1dB Compression Point
  • 19.4.5 Noise Figure
  • 19.5 Wireless Systems
  • 19.5.1 Broadband Amplifiers
  • 19.5.2 IF Amplifiers
  • 19.6 High-Speed Analog Input Drive Circuits
  • 19.7 Conclusions
  • 20 - Designing Low-Voltage Op Amp Circuits
  • 20.1 Introduction
  • 20.2 Critical Specifications
  • 20.2.1 Output Voltage Swing
  • 20.2.2 Dynamic Range
  • 20.2.3 Input Common-Mode Range
  • 20.2.4 Signal-to-Noise Ratio
  • 20.3 Summary.
  • 21 - Extreme Applications.