Reliability based airframe maintenance optimization and applications

Reliability Based Aircraft Maintenance Optimization and Applications presents flexible and cost-effective maintenance schedules for aircraft structures, particular in composite airframes. By applying an intelligent rating system, and the back-propagation network (BPN) method and FTA technique, a new...

Descripción completa

Detalles Bibliográficos
Otros Autores: Ren, He, author (author), Chen, Yong, author, Chen, Xi, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: London, England : Academic Press 2017.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630343706719
Tabla de Contenidos:
  • Cover
  • Title page
  • Copyright page
  • Contents
  • List of Figures
  • List of Tables
  • About the Authors
  • Preface
  • Abbreviations
  • Abstract
  • Chapter 1 - Introduction
  • 1.1 - Challenges of modern developing commercial aircraft
  • 1.2 - Evolution of aircraft maintenance process
  • 1.3 - Aircraft composite structures
  • 1.4 - Reliability-centered maintenance
  • 1.4.1 - Reliability Design
  • 1.4.2 - Reliability-Centered Maintenance
  • 1.5 - MSG-3 structural analysis
  • 1.6 - A380 maintenance programs
  • 1.7 - Summary
  • Chapter 2 - Basic Concepts
  • 2.1 - Accident
  • 2.1.1 - Accident in Aviation
  • 2.1.2 - Accident Category in Aviation
  • 2.2 - Near misses
  • 2.3 - Risk
  • 2.4 - Safety
  • 2.5 - Reliability
  • 2.6 - Risk management
  • 2.7 - Incident
  • 2.8 - Airworthiness
  • 2.9 - Quality
  • 2.10 - Airworthiness
  • 2.11 - Availability
  • 2.12 - Aircraft maintenance
  • 2.13 - Sources and types of failure in aircraft
  • 2.13.1 - Mechanisms of Failure
  • 2.13.2 - Causes of Failure
  • 2.13.3 - Sources of Failure
  • 2.14 - Maintenance system and tasks
  • 2.14.1 - Servicing
  • 2.15 - Component servicing
  • 2.16 - Overhaul
  • 2.17 - Bay servicing
  • 2.17.1 - Repair
  • 2.17.2 - Modification
  • 2.18 - Replacement/throwaway
  • 2.19 - Functional testing
  • 2.20 - Calibration
  • 2.21 - Nondestructive evaluation
  • 2.22 - Avionics maintenance
  • 2.23 - Software maintenance
  • 2.24 - Interdependence of operations and maintenance
  • 2.24.1 - Factors Affecting the Airline's Maintenance System
  • 2.24.1.1 - Seasonal Traffic Trends
  • 2.24.1.2 - Geography of the Operation
  • 2.24.1.3 - Location and Size of Maintenance Establishments
  • 2.24.1.4 - Size and Composition of the Airline Fleet
  • 2.24.1.5 - Aircraft Utilization
  • 2.24.1.6 - Weather
  • 2.24.1.7 - Availability of Subcontracting for Servicing and Maintenance
  • 2.24.1.8 - Competitors' Operations.
  • 2.24.1.9 - Availability of Staff
  • 2.24.2 - Factors Affecting the Military Maintenance System
  • Chapter 3 - Aircraft Reliability and Maintainability Analysis and Design
  • 3.1 - Reliability fundamental mathematics
  • 3.1.1 - Density Function
  • 3.1.2 - Failure Probability Function
  • 3.1.3 - Failure Rate
  • 3.1.4 - Reliability Function
  • 3.1.5 - Bathtub Curve
  • 3.1.6 - MTTF
  • 3.2 - Some common failure distributions
  • 3.2.1 - Exponential Distribution
  • 3.2.2 - Weibull Distribution
  • 3.2.3 - Normal Distribution
  • 3.2.4 - Lognormal Distribution
  • 3.2.5 - Summary of Often Used Distributions
  • 3.3 - Binary system reliability models
  • 3.3.1 - Series System
  • 3.3.2 - Parallel System
  • 3.3.3 - Standby Redundancy System
  • 3.4 - Mechanical reliability-Stress-strength interference model
  • 3.4.1 - Introduction of Theory
  • 3.4.2 - Analytical Results
  • 3.4.3 - Example
  • 3.5 - Fuzzy reliability theory
  • 3.5.1 - Irrationality of Conventional Reliability Theory
  • 3.5.2 - Fuzzy Reliability Basic Theories
  • 3.5.3 - Fuzzy Reliability
  • 3.5.4 - Fuzzy Failure Rate
  • 3.5.5 - Fuzzy MTBF
  • 3.6 - Hardware reliability
  • 3.6.1 - Failure Mechanisms and Damage Models
  • 3.6.2 - Incorrect Mechanical Performance
  • 3.6.3 - Incorrect Thermal Performance
  • 3.6.4 - Incorrect Electrical Performance
  • 3.6.5 - Electromagnetic Interference
  • 3.6.6 - Particle Radiation
  • 3.6.7 - Yield
  • 3.6.8 - Buckling
  • 3.6.9 - Fracture
  • 3.6.10 - Interfacial Deadhesion
  • 3.6.11 - Fatigue
  • 3.6.12 - Creep
  • 3.6.13 - Wear
  • 3.6.14 - Aging Due to Interdiffusion
  • 3.6.15 - Aging Due to Particle Radiation
  • 3.6.16 - Other Forms of Aging
  • 3.6.17 - Corrosion
  • 3.6.18 - Metal Migration
  • 3.7 - Maintainability analysis and design
  • 3.7.1 - Definitions Used in Maintainability Engineering
  • 3.7.2 - Measurements
  • 3.7.3 - Maintainability Function.
  • 3.7.4 - Often Used Maintainability Distributions
  • 3.7.5 - Availability Models
  • 3.7.6 - Effectiveness Models
  • 3.8 - Specification of Maintainability
  • 3.8.1 - Quantitative Maintainability Clauses
  • 3.8.2 - Qualitative Maintainability Requirements
  • 3.8.3 - Choice of a Maintainability Characteristic
  • 3.9 - Assessment and prediction of maintainability
  • 3.9.1 - Maintainability Prediction
  • 3.9.2 - Prediction Advantages
  • 3.9.3 - Techniques
  • 3.9.4 - Basic Assumptions and Interpretations
  • 3.9.5 - Elements of Maintainability Prediction Techniques
  • 3.10 - Maintainability design: The affected factors
  • 3.11 - Maintainability design: Criteria
  • 3.12 - Maintainability design: Allocation
  • 3.13 - Maintainability design-limiting clearance
  • 3.14 - Maintainability design-accessibility
  • 3.15 - Maintainability design-packaging
  • 3.16 - Maintainability design-standardization and interchange ability
  • 3.17 - Maintainability design-installation-components arrangement
  • 3.18 - Maintainability design-general criteria
  • 3.19 - Maintainability demonstration and testing
  • 3.19.1 - Maintainability Testing Program
  • 3.19.2 - Maintainability Demonstration
  • 3.19.3 - Test Conditions
  • 3.19.4 - Maintenance Task Selection
  • 3.20 - Maintainability and reliability program activities during the phases of a project
  • 3.20.1 - Definition Phase
  • 3.20.2 - Design and Development (Including Initial Manufacture)
  • 3.20.3 - Production
  • 3.20.4 - Installation and Commissioning
  • 3.20.5 - Operation-Usage and Maintenance
  • 3.21 - Maintainability management
  • 3.21.1 - Responsibilities Interface of Maintainability and Maintenance
  • 3.21.2 - Maintainability Analysis
  • 3.21.3 - Maintainability Design
  • 3.21.4 - Maintainability Administration
  • Chapter 4 - RCM and Integrated Logistic Support
  • 4.1 - Introduction.
  • 4.2 - Maintenance analysis procedures
  • 4.2.1 - The MSG Series Procedures
  • 4.2.2 - Reliability-Centered Maintenance
  • 4.2.3 - MSG-3 Logic
  • 4.2.4 - Structures
  • 4.2.5 - Fatigue Damage
  • 4.2.6 - Environmental Deterioration
  • 4.2.7 - Accidental Damage
  • 4.2.8 - Systems and Power Plants
  • 4.2.9 - Setting Task Frequencies/Intervals
  • 4.3 - Statistical reliability assessment
  • 4.4 - Logistic support analysis
  • 4.4.1 - LSA Tasks
  • 4.4.2 - Failure Mode Effect Analysis
  • 4.5 - Fault tree analysis
  • 4.5.1 - Qualitative Analysis of a Fault Tree
  • 4.5.2 - Quantitative Analysis of a Fault Tree
  • 4.6 - Level of repair analysis
  • 4.7 - Logistic support analysis record
  • 4.8 - LSA models
  • 4.9 - Elements of ILS
  • 4.10 - Support equipment
  • 4.11 - Facilities
  • 4.12 - Data
  • Chapter 5 - Intelligent Structural Rating System Based on Back-Propagation Network
  • 5.1 - Introduction
  • 5.2 - Artificial neural network
  • 5.2.1 - Basic Theory
  • 5.2.2 - Back-Propagation Network
  • 5.3 - Design BPN for AD
  • 5.3.1 - BPN Configuration
  • 5.3.2 - Case Study
  • 5.4 - Discussion
  • 5.4.1 - Selection of Number of Nodes in Hidden Layers and Parameter Ratio
  • 5.4.2 - Selection of Training Algorithms
  • 5.5 - Conclusions
  • Chapter 6 - Fault Tree Analysis for Composite Structural Damage
  • 6.1 - Introduction
  • 6.2 - Basic principles of fault tree analysis
  • 6.2.1 - Elements of FTA
  • 6.2.2 - Boolean Algebra Theorems
  • 6.3 - FTA for composite damage
  • 6.4 - Qualitative analysis
  • 6.4.1 - Minimal Cut Sets
  • 6.4.2 - Structure Importance Analysis
  • 6.4.3 - Probability Importance Analysis
  • 6.4.4 - Relative Probability Importance Analysis
  • 6.5 - Quantitative analysis
  • 6.6 - Discussion
  • 6.7 - Potential solutions
  • 6.7.1 - Material Design
  • 6.7.2 - Fabrication Process
  • 6.7.3 - Personnel Training
  • 6.7.4 - Surface Protection.
  • 6.7.5 - Damage Evaluation and Life Prediction
  • 6.8 - Conclusions
  • Chapter 7 - Inspection Interval Optimization for Aircraft Composite Structures Considering Dent Damage
  • 7.1 - Introduction
  • 7.2 - Damage tolerance philosophy of composite structures
  • 7.2.1 - Properties of Aircraft Composite Structures
  • 7.2.2 - Maintenance Model of Composite Structures
  • 7.3 - Damage characterization
  • 7.3.1 - Data Statistics and Category
  • 7.3.2 - Damage Size Distribution
  • 7.3.3 - Probability of Detection (POD)
  • 7.4 - Probabilistic method
  • 7.4.1 - Reliability Formulation
  • 7.4.2 - Monte Carlo Simulation
  • 7.5 - Case study
  • 7.5.1 - Average Damages Per Life Cycle (Nd)
  • 7.5.2 - Load Cases
  • 7.5.3 - Damage Size and Occurrence Time
  • 7.5.4 - Inspection Efficiency
  • 7.5.5 - Residual Strength Reduction and Recovery
  • 7.5.6 - Other Assumptions and Definitions to Facilitate the Simulation
  • 7.6 - Simulation results and discussion
  • 7.7 - Conclusions
  • Chapter 8 - Repair Tolerance for Composite Structures Using Probabilistic Methodologies
  • 8.1 - Introduction
  • 8.2 - Repair tolerance
  • 8.3 - Probabilistic method
  • 8.4 - Case study
  • 8.4.1 - Load Case
  • 8.4.2 - Average Damage Per Life Cycle (Nd)
  • 8.4.3 - Damage Size Distribution
  • 8.4.4 - Probability of Detection (POD)
  • 8.4.5 - Inspection Schedule
  • 8.4.6 - Residual Strength Reduction and Recovery
  • 8.4.7 - Repair Policy
  • 8.4.8 - Factor of Safety
  • 8.4.9 - Probability of Failure (POF)
  • 8.4.10 - Maintenance Cost
  • 8.5 - Results and discussion
  • 8.6 - Conclusions
  • Chapter 9 - Structural Health Monitoring and Influence on Current Maintenance
  • 9.1 - Structural health monitoring technology
  • 9.2 - SHM applications in aircraft
  • 9.3 - Influence of SHM on current maintenance
  • 9.4 - Integration of SHM with MSG-3 analysis
  • A - Scheduled Maintenance
  • B - Scheduled SHM.
  • C - Scheduled CBM.