Cost-effective energy-efficient building retrofitting materials, technologies, optimization and case studies

Cost-Effective Energy Efficient Building Retrofitting:Materials, Technologies, Optimization and Case Studies provides essential knowledge for civil engineers, architects, and other professionals working in the field of cost-effective energy efficient building retrofitting. The building sector is res...

Descripción completa

Detalles Bibliográficos
Otros Autores: Torgal, Fernando Pacheco, author (author), Torgal, Fernando Pacheco, editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cambridge, Massachusetts : Woodhead Publishing 2017.
Edición:1st edition
Colección:Woodhead Publishing series in civil and structural engineering.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630341106719
Tabla de Contenidos:
  • Front Cover
  • Cost-Effective Energy-Efficient Building Retrofitting
  • Copyright Page
  • Contents
  • List of Contributors
  • Foreword
  • 1 Introduction to Cost-Effective Energy-Efficient Building Retrofitting
  • 1.1 Sustainable Development and Energy Production
  • 1.2 Building Energy Efficiency and Energy Retrofitting
  • 1.3 Financing Aspects Regarding Energy Retrofitting in Europe
  • 1.4 The Importance of Socioeconomic Aspects
  • 1.5 Outline of the Book
  • References
  • I. Materials and Technologies
  • 2 Methodologies for Selection of Thermal Insulation Materials for Cost-Effective, Sustainable, and Energy-Efficient Retrof ...
  • Nomenclature
  • 2.1 Introduction
  • 2.2 Thermal Insulation Materials
  • 2.2.1 Composition-Based Classification of Thermal Insulation Materials
  • 2.2.2 Physics of Performance-Based Classification of Thermal Insulation Materials
  • 2.3 Environmental and Economic Assessment of Thermal Insulation Materials
  • 2.3.1 Environmental Assessment of Thermal Insulation Materials
  • 2.3.2 Economic Assessment of Thermal Insulation Materials
  • 2.4 Advancements in the Field of Building Materials Applied for the Energy Upgrade of Buildings
  • 2.4.1 Thermal Insulation Building Elements and Systems
  • 2.4.1.1 Inorganic Insulation Materials
  • 2.4.1.2 Organic Insulation Materials
  • 2.4.1.3 Plasters and Mortars
  • 2.4.1.4 Thermally Insulating Concrete
  • 2.4.1.5 Vacuum Insulation Panels
  • 2.4.1.6 Phase Change Materials
  • 2.4.1.7 Aerogels
  • 2.4.1.8 Vacuum Insulation Materials and Gas Insulation Materials
  • 2.4.1.9 Nano Insulation Materials
  • 2.4.1.10 Dynamic Insulation Materials
  • 2.4.2 LCC of Renovation Measures
  • 2.5 Conclusions
  • References
  • 3 Phase Change Materials for Application in Energy-Efficient Buildings
  • 3.1 Introduction
  • 3.2 Phase Change Materials in General
  • 3.2.1 General.
  • 3.2.2 General Categorization of Phase Change Materials
  • 3.2.2.1 Organic
  • 3.2.2.2 Inorganic
  • 3.2.2.3 Eutectic Mixtures
  • 3.2.2.4 Comparison Summary
  • 3.2.3 Encapsulation
  • 3.2.3.1 Microencapsulation
  • 3.2.3.2 Macroencapsulation
  • 3.2.4 Long-Term Stability
  • 3.3 State-of-the-Art Phase Change Materials
  • 3.3.1 Phase Change Material Compounds
  • 3.3.2 Phase Change Materials in Products for Building Applications
  • 3.3.3 Phase Change Materials in Windows
  • 3.3.4 Comparison of Commercial Products
  • 3.4 Phase Change Materials in Building Applications
  • 3.4.1 Building Applications
  • 3.4.1.1 Free Cooling
  • 3.4.1.2 Peak Load Shifting
  • 3.4.1.3 Active Building Systems
  • 3.4.1.4 Passive Building Systems
  • 3.4.1.5 Thermal Comfort Control
  • 3.4.2 Solar Energy Storage
  • 3.4.3 Examples of Integration of Phase Change Materials for Passive Systems
  • 3.4.3.1 Walls
  • 3.4.3.2 Floors
  • 3.4.3.3 Roofs
  • 3.4.3.4 Windows and Shutters
  • 3.4.3.5 Concrete
  • 3.4.3.6 Thermal Insulation Materials
  • 3.4.3.7 Furniture and Indoor Appliances
  • 3.4.4 Retrofitting
  • 3.4.5 Safety Requirements
  • 3.5 Future Research Opportunities
  • 3.5.1 Improving the Current Technologies
  • 3.5.1.1 Increasing Thermal Storage Capacity
  • 3.5.1.2 Enhancing Heat Transfer
  • 3.5.2 New Technologies
  • 3.5.2.1 Nanoencapsulated Phase Change Materials
  • 3.5.2.2 Adjustable Phase Change Temperature
  • 3.5.3 Further Reflections
  • 3.5.3.1 Developing a Standard Test Scheme
  • 3.5.3.2 Differential Scanning Calorimetry
  • 3.5.3.3 T-History
  • 3.5.3.4 Dynamic Heat Flow Apparatus
  • 3.5.3.5 Dynamic Hot Box
  • 3.5.3.6 Dynamic Guarded Hot Plate
  • 3.5.3.7 M-Value
  • 3.5.3.8 Environmental Impact Assessments
  • 3.5.3.9 Expected Lifetime Predicament of Phase Change Materials
  • 3.5.3.10 Quantifying the Effect of Phase Change Materials in Real-Life Buildings.
  • 3.5.3.11 Investigating Payback Times for Various Systems
  • 3.5.3.12 Development of Advanced Building Envelopes
  • 3.6 Conclusions
  • Acknowledgments
  • References
  • 4 Reflective Materials for Cost-Effective Energy-Efficient Retrofitting of Roofs
  • 4.1 Introduction
  • 4.2 White Reflective Materials
  • 4.2.1 Brief History
  • 4.2.2 Properties
  • 4.2.3 Cost-Effectiveness of Reflective White Materials
  • 4.3 Colored Reflective Materials
  • 4.3.1 Brief History
  • 4.3.2 Properties
  • 4.3.3 Cost Effectiveness of Colored Reflective Materials
  • 4.4 Retroreflective Materials
  • 4.5 Thermochromic Materials
  • 4.6 Conclusions
  • Acknowledgments
  • References
  • 5 Solar Air Collectors for Cost-Effective Energy-Efficient Retrofitting
  • 5.1 Introduction
  • 5.2 Types of SACs
  • 5.2.1 Unglazed Transpired Solar Air Collectors
  • 5.2.1.1 Theoretical Studies of UTSAC
  • 5.2.1.2 Mathematical Models to Predict Existing UTSAC Outputs
  • 5.2.1.3 Experimental Studies on Existing UTSAC
  • 5.2.2 Back-Pass Solar Air Collector
  • 5.3 Unglazed SAC Numerical Model
  • 5.3.1 Experimental Setup and Methodology
  • 5.3.1.1 System Description
  • 5.3.1.2 Global Solar Radiation Measurements
  • 5.3.1.3 Air Temperature Measurements
  • 5.3.1.4 Airflow Measurements
  • 5.3.1.5 Wind-Speed Measurements
  • 5.3.2 Data Collection
  • 5.3.2.1 Measurement Processing
  • 5.3.2.2 Air Inlet and Outlet Temperatures
  • 5.3.2.3 Airflow Rate
  • 5.3.3 Energy-Balance Equations
  • 5.4 Life-Cycle Cost Analysis (LCCA)
  • 5.4.1 Energy Analysis
  • 5.4.2 Economic Analysis
  • 5.4.2.1 Operation and Maintenance Costs
  • 5.4.2.2 Life-Cycle Savings
  • 5.4.2.3 Simple Payback Period
  • 5.4.3 Results
  • 5.4.3.1 Internal Rate of Return (IRR)
  • 5.4.4 Summary of Economic Analysis
  • 5.5 Concluding Remarks
  • References
  • 6 Building-Integrated Photovoltaics (BIPV) for Cost-Effective Energy-Efficient Retrofitting.
  • 6.1 Introduction
  • 6.1.1 Building-Integrated Photovoltaics (BIPV)
  • 6.1.2 BIPV Market
  • 6.2 Cost-Effective Energy Retrofitting and Nearly- and Net-Zero Energy Building Design
  • 6.2.1 Cost-Effective Energy Retrofitting and Potentialities of Integration of Photovoltaics
  • 6.2.2 Nearly Zero-Energy Building Design and Photovoltaics
  • 6.3 Photovoltaic Products for Buildings
  • 6.3.1 Market Offer Breakdown
  • 6.3.2 Costs of Photovoltaics in/on Buildings
  • 6.3.3 Considerations About the BIPV Market and Suitability of PV Products for Retrofitting
  • 6.4 Conclusions: Potentialities and Challenges
  • References
  • II. Optimization
  • 7 Measurement and Verification Models for Cost-Effective Energy-Efficient Retrofitting
  • Nomenclature for Measurement and Verification Terms
  • 7.1 Introduction
  • 7.2 Fundamental Principles of Measurement and Verification
  • 7.3 Measurement and Verification Protocols &amp
  • Standards
  • 7.3.1 International Performance Measurement and Verification Protocol
  • 7.3.2 Federal Energy Management Program
  • 7.3.3 ASHRAE (American Society of Heating, Refrigerating, and Air-Conditioning Engineers) Guideline 14
  • 7.3.4 ISO (International Standards Organization) 50015
  • 7.3.5 Superior Energy Performance protocol
  • 7.4 Measurement and Verification Options
  • 7.4.1 Retrofit Isolation: Key Parameter Measurement
  • 7.4.2 Retrofit Isolation: All-Parameter Measurement
  • 7.4.3 Whole Facility
  • 7.4.4 Calibrated Simulation
  • 7.4.5 Examples for M&amp
  • V Options
  • 7.5 Drivers for and Barriers Against M&amp
  • V
  • 7.6 Innovative Methods for Cost-Effective M&amp
  • V: An Overview
  • 7.6.1 Energy Monitoring
  • 7.6.2 Monitoring of the Indoor Environmental Quality
  • 7.6.3 Occupancy Monitoring
  • 7.7 Summary
  • References
  • 8 A Cost-Effective Human-Based Energy-Retrofitting Approach
  • 8.1 Introduction.
  • 8.2 Why Should Occupants' Awareness Play a Key Role in Building Energy Saving?
  • 8.2.1 The Potentialities of People's Engagement for Energy Saving
  • 8.3 Human-Building System Interaction: Active and Passive Roles of Occupants
  • 8.4 Typical Occupants' Attitudes Playing a Key Role in Energy Need
  • 8.5 Occupants' Behavior in Building Thermal Energy Dynamic Simulation
  • 8.5.1 Dynamic Simulation Models and Occupancy Schedules
  • 8.5.2 Case Study of Numerical Analyses About Predictive and Postoccupancy Approaches
  • 8.6 Occupant Behavior Towards Energy Saving in Buildings
  • 8.6.1 Understanding the Role of Social and Personal Engagement for Energy Saving
  • 8.6.2 The Role of Eco-Feedback
  • 8.6.3 Occupants' Behavior Towards Retrofitting and Human-Based Energy Retrofits
  • 8.6.4 Possible Interventions Towards Proenvironmental Energy Behavior: Peer-Network Effect and Social Triggering for Energy ...
  • 8.7 Conclusions
  • References
  • 9 An Overview of the Challenges for Cost-Effective and Energy-Efficient Retrofits of the Existing Building Stock
  • 9.1 Introduction
  • 9.2 Challenges in Building Energy Retrofitting
  • 9.2.1 Priorities of Stakeholders
  • 9.2.2 Time Period
  • 9.2.3 Capital Investment
  • 9.2.4 Cost Effectiveness
  • 9.2.5 Risk Analysis
  • 9.2.6 Technology
  • 9.2.7 Government Policies
  • 9.2.8 Reliable Prediction of Building Energy Performance
  • 9.3 Optimization Approaches for the Design of Building Energy Retrofit
  • 9.4 Building Energy Retrofit and Sustainability
  • 9.5 Conclusions
  • Acknowledgment
  • References
  • 10 Smart Heating Systems for Cost-Effective Retrofitting
  • 10.1 Introduction
  • 10.2 Technology
  • 10.2.1 "Smartness" in the Primary Systems
  • 10.2.2 "Smartness" in the Secondary Systems
  • 10.2.3 The Control and the Building Automation
  • 10.2.4 The Heat Metering
  • 10.2.5 The Users Interfaces.
  • 10.3 Case Studies and Lessons Learned.