Nanoscience and its applications

Nanoscience and Its Applications explores how nanoscience is used in modern industry to increase product performance, including an understanding of how these materials and systems, at the molecular level, provide novel properties and physical, chemical, and biological phenomena that have been succes...

Descripción completa

Detalles Bibliográficos
Otros Autores: de Oliveira, Osvaldo, author (author), Da Róz, Alessandra L., author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Oxford, [England] ; Cambridge, [Massachusetts] : William Andrew 2017.
Edición:1st edition
Colección:Micro & nano technologies series
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630338106719
Tabla de Contenidos:
  • Cover
  • Title page
  • Copyright Page
  • Table of content
  • List of Contributors
  • 1 - Nanomaterials: Solar Energy Conversion
  • 1.1 - Introduction
  • 1.2 - Conversion of Solar Energy Into Electricity
  • 1.2.1 - Solar Spectrum and Photovoltaic Performance Parameters
  • 1.2.2 - Operating Principles of a Solar Cell
  • 1.2.3 - Organic Solar Cells
  • 1.2.4 - Dye-Sensitized Solar Cells
  • 1.3 - Photoelectrochemical Cells for the Production of Solar Fuels
  • 1.4 - Conclusions and Perspectives
  • List of Symbols
  • References
  • 2 - Nanoelectronics
  • 2.1 - Organic Materials for Nanoelectronics: Insulators and Conductors
  • 2.1.1 - Techniques for Making Organic Films
  • 2.2 - Process of Charge Transport in Organic Devices
  • 2.3 - Organic Thin Film Transistors
  • 2.3.1 - Structure of the TFT
  • 2.3.2 - Modeling of the Characteristic Curves
  • 2.3.2.1 - Field Effect Mobility
  • 2.3.2.2 - Organic TFT-Based Sensors
  • 2.4 - Organic Light-Emitting Diodes
  • 2.4.1 - Structure of Thin Films in OLEDs and Typical Materials Used
  • 2.4.2 - Electrooptic Characterization of OLEDs
  • List of Symbols
  • References
  • 3 - Nanomedicine
  • 3.1 - Nanomedicine
  • 3.2 - Nanomaterials Applied to Diagnosis and Therapy
  • 3.2.1 - Use of Nanomaterials in Medicine
  • 3.2.2 - Medical Applications of Magnetite and Core-Shells
  • 3.2.3 - Controlled Drug Delivery
  • 3.2.4 - Nanoparticles in Photothermal and Photodynamic Therapy
  • 3.2.5 - Nanoparticles for Upconversion-Imaging of Cancer Cells
  • 3.3 - Synthesis of Nanomaterials for Application in Nanomedicine
  • 3.3.1 - Gold Nanoparticles
  • 3.3.2 - Magnetic Nanoparticles
  • 3.3.3 - Core-Shell-Type Structures
  • 3.3.4 - Biofunctionalization of Nanomaterials
  • 3.4 - Nanotoxicology
  • 3.4.1 - In Vitro Assays
  • 3.4.2 - In Vivo Studies
  • References
  • 4 - Nanoneurobiophysics
  • 4.1 - Introduction
  • 4.2 - Nanopharmacology.
  • 4.3 - Nanoneuroscience and Nanoneuropharmacology
  • 4.3.1 - Basic Nanoneuroscience
  • 4.3.1.1 - AFM
  • 4.3.1.2 - Quantum Dots
  • 4.3.2 - Clinical Nanoneuroscience
  • 4.3.2.1 - Neuroprotection and Neuroregeneration
  • 4.3.2.1.1 - Carbon nanotubes
  • 4.3.2.1.2 - Fullerenes
  • 4.3.2.2 - Nanoneuropharmacology: Controlled Delivery Systems Applied to CNS Diseases
  • 4.3.2.2.1 - Nanogels
  • 4.3.2.2.2 - Liposomes
  • 4.3.2.2.3 - Biodegradable nanoparticles
  • 4.3.2.2.4 - Micelles
  • 4.3.2.2.5 - Dendrimers
  • 4.3.2.2.6 - Nanosponges
  • 4.4 - Computational Resources in Nanomedicine
  • 4.4.1 - Computational Neuroscience, Neuroinformatics, and Neurobiophysics
  • 4.4.2 - Nano(bio)informatics
  • 4.4.3 - Application of Informatics Methods and Tools to Nanomedical Data
  • Abbreviations
  • Glossary
  • References
  • 5 - Nanosensors
  • 5.1 - Introduction
  • 5.2 - Sensors and Nanosensors: New Detection Tools
  • 5.3 - Atomic Force Spectroscopy (Force Curve)
  • 5.3.1 - Theoretical Considerations Regarding Force Curves
  • 5.3.1.1 - Basic AFS Principles
  • 5.3.1.2 - Theoretical Models for Analysis of Force Curves
  • 5.3.1.2.1 - Hertz and Sneddon theory
  • 5.3.1.2.2 - Bradley, Derjaguin-Muller-Toporov, and Johnson-Kendall-Roberts theories
  • 5.3.2 - Chemical Force Microscopy
  • 5.3.2.1 - Introduction
  • 5.3.2.2 - Methodology for the Functionalization and Characterization of AFM Probes
  • 5.4 - Applications for AFM Tip Sensors
  • 5.5 - Microcantilever Sensors
  • 5.5.1 - Operation Modes of Microcantilever Sensors
  • 5.5.2 - Theoretical Considerations
  • 5.5.3 - Applications for Microcantilever Sensors
  • 5.6 - Challenges and Tendencies
  • List of Symbols
  • References
  • 6 - Electrochemical Sensors
  • 6.1 - Introduction
  • 6.2 - Electroanalytical Methods
  • 6.2.1 - Principles
  • 6.2.2 - Potentiometry
  • 6.2.3 - Chronoamperometry
  • 6.2.4 - Voltammetric Methods.
  • 6.2.4.1 - Cyclic Voltammetry
  • 6.2.4.2 - Differential Pulse Voltammetry
  • 6.2.4.3 - Square Wave Voltammetry
  • 6.2.5 - Electrochemical Impedance Spectroscopy
  • 6.2.6 - Electronic Tongue: Concepts, Principles, and Applications
  • List of Symbols
  • References
  • 7 - Molecular Modeling Applied to Nanobiosystems
  • 7.1 - Introduction
  • 7.1.1 - Molecular Modeling
  • 7.1.2 - Computer-Assisted Molecular Modeling
  • 7.2 - Basic Representation Types
  • 7.3 - Biomolecules and Protein Modeling
  • 7.3.1 - Biomolecules
  • 7.3.2 - Proteins
  • 7.3.3 - Protein Structure
  • 7.3.4 - Types of Protein and Biomolecule Representations
  • 7.3.5 - Biological Structure Databases
  • 7.3.6 - Protein Structure Visualization, Manipulation, and Analysis Tools
  • 7.4 - Molecular Computer Modeling Methods Applied To Biomolecules
  • 7.4.1 - Classical Methods
  • 7.4.1.1 - Molecular Dynamics
  • 7.4.1.1.1 - Molecular dynamics and related potentials
  • 7.4.1.1.2 - Molecular dynamics simulation methods
  • 7.4.1.2 - Molecular Docking
  • 7.4.1.2.1 - Receptor-ligand molecular docking
  • 7.4.1.2.2 - Genetic algorithms
  • 7.4.2 - Hybrid Methods (Quantum Mechanics/Molecular Mechanics)
  • 7.4.2.1 - Introduction to Hybrid Methods
  • 7.4.2.2 - Simulation of Biomolecular Systems
  • 7.4.2.3 - Programs for Using the QM/MM Methodology
  • 7.4.2.4 - Theoretical Foundations and Mathematical Description
  • 7.4.2.5 - Electrostatic Interactions
  • 7.4.2.6 - Applications of QM/MM in Molecular Systems
  • 7.4.3 - Structural Characterization
  • 7.4.3.1 - X-Ray Diffraction
  • 7.4.3.2 - Nuclear Magnetic Resonance
  • 7.4.3.3 - Protein Modeling by Homology
  • 7.5 - Some Recent Applications
  • 7.5.1 - Applications in the Pharmaceutical Industry
  • 7.5.1.1 - Pharmaceutical Development
  • 7.5.1.2 - Rational Pharmaceutical Design
  • 7.5.2 - Technological Applications.
  • 7.5.2.1 - Nanoneurobiophysics: New Perspectives for the Application of Nanotechnology to Biomedical Studies
  • 7.5.2.2 - Computational Methods Applied to the Development of Nanobiosensors
  • 7.6 - Final Considerations
  • List of Symbols
  • References
  • Index
  • Back cover.