Fluid phase behavior for conventional and unconventional oil and gas reservoirs

Fluid Phase Behavior for Conventional and Unconventional Oil and Gas Reservoirs delivers information on the role of PVT (pressure-volume-temperature) tests/data in various aspects, in particular reserve estimation, reservoir modeling, flow assurance, and enhanced oil recovery for both conventional a...

Full description

Bibliographic Details
Other Authors: Bahadori, Alireza, author (author)
Format: eBook
Language:Inglés
Published: Amsterdam, [Netherlands] : Gulf Professional Publishing 2017.
Edition:1st edition
Subjects:
See on Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630332706719
Table of Contents:
  • Front Cover
  • Fluid Phase Behavior for Conventional and Unconventional Oil and Gas Reservoirs
  • Fluid Phase Behaviorfor Conventional and Unconventional Oiland Gas Reservoirs
  • Copyright
  • Dedication
  • CONTENTS
  • LIST OF CONTRIBUTORS
  • BIOGRAPHY
  • PREFACE
  • ACKNOWLEDGMENTS
  • One - Oil and Gas Properties and Correlations
  • 1.1 INTRODUCTION
  • 1.2 CRUDE OIL PROPERTIES
  • 1.2.1 Oil Density
  • 1.2.1.1 Equation of State Method
  • 1.2.1.2 Alani-Kennedy Equation
  • 1.2.1.3 Standing-Katz Method
  • 1.2.1.4 American Petroleum Institute Method
  • 1.2.1.5 Other Methods
  • 1.2.2 Oil Gravity
  • 1.2.3 Oil Compressibility
  • 1.2.3.1 Vasquez and Beggs Correlation
  • 1.2.3.2 Petrosky Correlation
  • 1.2.4 Oil Bubble Point Pressure
  • 1.2.4.1 Standing Correlation
  • 1.2.4.2 Vasquez and Beggs Correlation
  • 1.2.4.3 Al-Marhoun Correlation
  • 1.2.4.4 Glaso Correlation
  • 1.2.4.5 Petrosky Correlation
  • 1.2.5 Solution Gas Oil Ratio
  • 1.2.5.1 Standing Correlation
  • 1.2.5.2 Vasquez-Beggs Correlation
  • 1.2.5.3 Al-Marhoun Correlation
  • 1.2.5.4 Glaso Correlation
  • 1.2.5.5 Petrosky Correlation
  • 1.2.6 Oil Formation Volume Factor
  • 1.2.6.1 Standing Correlation
  • 1.2.6.2 Vasquez and Beggs Correlation
  • 1.2.6.3 Kartoatmodjo and Schmidt Correlation
  • 1.2.6.4 Al-Marhoun Correlation
  • 1.2.6.5 Glaso Correlation
  • 1.2.6.6 Petrosky Correlation
  • 1.2.6.7 Arps Correlation
  • 1.2.7 Oil Viscosity
  • 1.2.7.1 Corresponding State Method
  • 1.2.7.2 Lohrenz-Bary-Clark Method
  • 1.2.7.3 Quiñones-Cisneros et al. Method
  • 1.2.7.4 Vasquez and Beggs Correlation
  • 1.2.7.5 Glaso Correlation
  • 1.2.7.6 Chew and Connally Correlation
  • 1.2.7.7 Beggs and Robinson Correlation
  • 1.2.7.8 Beal Correlation
  • 1.3 GAS PROPERTIES
  • 1.3.1 Gas Density
  • 1.3.1.1 Theoretical Determination of Gas Density
  • 1.3.2 Gas Compressibility
  • 1.3.3 Gas Formation Volume Factor.
  • 1.3.4 Total Formation Volume Factor
  • 1.3.4.1 Al-Marhoun Correlation
  • 1.3.4.2 Glaso Correlation
  • 1.3.5 Gas Viscosity
  • 1.3.5.1 Carr et al. Method
  • 1.3.5.2 Lee et al. Method
  • 1.4 INTERFACIAL TENSION
  • 1.4.1 Parachor Model
  • Problems
  • REFERENCES
  • Two - Equations of State
  • 2.1 INTRODUCTION
  • 2.2 CUBIC EQUATION OF STATE (EOS)
  • 2.3 NONCUBIC EOS
  • 2.4 CORRESPONDING STATE CORRELATIONS
  • 2.5 MIXING RULES
  • Problems
  • REFERENCES
  • Three - Plus Fraction Characterization
  • 3.1 INTRODUCTION
  • 3.2 EXPERIMENTAL METHODS
  • 3.2.1 True Boiling Point Distillation Method
  • 3.2.2 Chromatography
  • 3.3 SPLITTING METHODS
  • 3.3.1 Katz Method
  • 3.3.2 Pedersen Method
  • 3.3.3 Gamma Distribution Method
  • 3.4 PROPERTIES ESTIMATION
  • 3.4.1 Watson Characterization Factor Estimation
  • 3.4.2 Boiling Point Estimation
  • 3.4.3 Critical Properties and Acentric Factor Estimation
  • 3.4.4 Molecular Weight Estimation
  • 3.4.5 Specific Gravity Estimation
  • 3.5 RECOMMENDED PLUS FRACTION CHARACTERIZATION PROCEDURE
  • Problems
  • REFERENCES
  • Four - Tuning Equations of State
  • 4.1 MATCHING THE SATURATION PRESSURE USING THE EXTENDED GROUPS
  • 4.2 GROUPING METHODS
  • 4.2.1 Whitson Method
  • 4.2.2 Pedersen et al. Method (Equal Weight Method)
  • 4.2.3 The Cotterman and Prausnitz Method (Equal Mole Method)
  • 4.2.4 Danesh et al. Method
  • 4.2.5 The Aguilar and McCain Method
  • 4.3 COMPOSITION RETRIEVAL
  • 4.4 ASSIGNING PROPERTIES TO MULTIPLE CARBON NUMBER
  • 4.5 MATCHING THE SATURATION PRESSURE USING THE GROUPED COMPOSITION
  • 4.6 VOLUME TRANSLATION
  • Problems
  • REFERENCES
  • Five - Vapor-Liquid Equilibrium (VLE) Calculations
  • 5.1 AN INTRODUCTION TO EQUILIBRIUM
  • 5.2 FLASH CALCULATIONS
  • 5.3 METHODS OF FINDING K-VALUE
  • 5.3.1 Ideal Concept
  • 5.3.1.1 Lewis Fugacity Rule
  • 5.3.1.2 Raoult's Law
  • 5.3.1.3 Henry's Law.
  • 5.3.2 Fugacity-Derived Equilibrium Ratio (φ−φ Approach)
  • 5.3.3 Activity-Derived Equilibrium Ratios (γ−φ Approach)
  • 5.3.4 Correlations for Finding Equilibrium Ratio
  • 5.3.4.1 Wilson's Correlation
  • 5.3.4.2 Standing's Correlation
  • 5.3.4.3 Whitson and Torp Correlation
  • 5.4 BUBBLE AND DEW-POINT CALCULATIONS
  • 5.5 A DISCUSSION ON THE STABILITY
  • 5.6 MULTIPHASE FLASH CALCULATIONS
  • 5.7 CALCULATION OF SATURATION PRESSURES WITH STABILITY ANALYSIS
  • 5.8 IDENTIFYING PHASES
  • Problems
  • REFERENCES
  • six - Fluid Sampling
  • 6.1 INTRODUCTION
  • 6.2 SAMPLING METHOD
  • 6.2.1 Subsurface Sampling
  • 6.2.1.1 Bottom-Hole Samplers
  • 6.2.1.2 Formation Testers
  • 6.2.1.3 Surface Sampling
  • 6.2.1.4 Wellhead Sampling
  • 6.2.1.5 Relative Advantages of Subsurface and Surface Sampling
  • 6.3 RECOMBINATION
  • 6.3.1 Case 1
  • 6.3.2 Case 2
  • 6.3.3 Case 3
  • 6.3.4 Case 4
  • 6.4 PVT TESTS
  • 6.4.1 Differential Test
  • 6.4.2 Swelling Test
  • 6.4.3 Separator Test
  • 6.4.4 Constant Composition Test
  • 6.4.5 Constant Volume Depletion
  • 6.4.6 Differential Liberation Test
  • 6.5 FLASH CALCULATION
  • Problems
  • REFERENCES
  • Seven - Retrograde Gas Condensate
  • 7.1 INTRODUCTION
  • 7.2 GAS-CONDENSATE FLOW REGIONS
  • 7.2.1 Condensate Blockage
  • 7.2.2 Composition Change and Hydrocarbon Recovery
  • 7.3 EQUATIONS OF STATE
  • 7.3.1 Van der Waals's Equation of State
  • 7.3.2 Soave-Redlich-Kwong Equation of State
  • 7.3.3 The Soave-Redlich-Kwong-Square Well Equation of State
  • 7.3.4 Peng-Robinson Equation of State
  • 7.3.5 Peng-Robinson-Gasem Equation of State
  • 7.3.6 Nasrifar and Moshfeghian (NM) Equation of State
  • 7.3.7 Schmidt and Wenzel Equation of State
  • 7.3.8 The Patel-Teja Equation of State and Modifications
  • 7.3.9 Mohsen-Nia-Modarress-Mansoori Equation of State
  • 7.3.10 Adachi-Lu-Sugie Equation of State
  • 7.4 MIXING RULES
  • 7.5 HEAVY FRACTIONS.
  • 7.6 GAS PROPERTIES
  • 7.6.1 Viscosity
  • 7.6.1.1 Empirical Correlations
  • 7.6.1.1.1 Lee-Gonzalez-Eakin Method (1966)
  • 7.6.1.1.2 Dempsey's Standing Method (1965)
  • 7.6.1.1.3 Chen and Ruth Method (1993)
  • 7.6.1.1.4 Elsharkawy Method (2004)
  • 7.6.1.1.5 Sutton Method (2007)
  • 7.6.1.1.6 Shokir and Dmour Method (2009)
  • 7.6.1.1.7 Sanjari-Nemati Lay-Peymani Method (2011)
  • 7.6.2 Z Factor
  • 7.6.2.1 Empirical Correlations
  • 7.6.2.1.1 Papay (1968)
  • 7.6.2.1.2 Beggs and Brill (1973)
  • 7.6.2.1.3 Shell Oil Company
  • 7.6.2.1.4 Bahadori et al. (2007)
  • 7.6.2.1.5 Azizi et al. (2010)
  • 7.6.2.1.6 Sanjari and Nemati Lay (2012)
  • 7.6.2.1.7 Shokir et al. (2012)
  • 7.6.2.1.8 Mahmoud (2014)
  • 7.6.2.2 Equations of State
  • 7.6.3 Density
  • 7.6.3.1 Empirical Correlations
  • 7.6.3.1.1 Nasrifar and Moshfeghian
  • 7.6.3.2 Equation of State
  • 7.6.4 Formation Volume Factor
  • 7.6.5 Equilibrium Ratio
  • 7.6.5.1 Equilibrium Ratio for Hydrocarbon Mixtures
  • 7.6.5.1.1 Wilson's Correlation
  • 7.6.5.1.2 Standing's Correlation
  • 7.6.5.1.3 Whitson and Torp's Method
  • 7.6.5.2 Equilibrium Ratio for Nonhydrocarbon Mixtures
  • 7.6.6 Dew-Point Pressure
  • 7.6.6.1 Empirical Correlations
  • 7.6.6.1.1 Nemeth and Kennedy (1967)
  • 7.6.6.1.2 Elsharkawy (2002)
  • 7.6.6.1.3 Humoud and Al-Marhoun (2001)
  • 7.6.6.1.4 Alternating Conditional Expectations
  • 7.6.6.1.4.1 Marruffo-Maita-Him-Rojas (2002)
  • 7.6.6.2 Iterative Method
  • Problems
  • REFERENCES
  • Eight - Gas Hydrates
  • 8.1 INTRODUCTION
  • 8.2 TYPES AND PROPERTIES OF HYDRATES
  • 8.3 THERMODYNAMIC CONDITIONS FOR HYDRATE FORMATION
  • 8.3.1 Calculating Hydrate Formation Condition
  • 8.3.1.1 Correlations
  • 8.3.1.1.1 Makogon (1981)
  • 8.3.1.1.2 Kobayashi et al. (1987)
  • 8.3.1.1.3 Motiee (1991)
  • 8.3.1.1.4 Østergaard et al. (2000)
  • 8.3.1.1.5 Sun et al. (2003)
  • 8.3.1.1.6 Towler and Mokhatab (2005).
  • 8.3.1.1.7 Bahadori and Vuthaluru (2009)
  • 8.3.1.2 Equation of States
  • 8.3.1.2.1 The Cubic-Plus-Association Equation of State
  • 8.3.1.2.2 Peng-Robinson Equation of State
  • 8.3.1.2.3 Perturbed Chain-Statistical Associating Fluid Theory
  • 8.3.1.2.3.1 Mathematical Formulation of PC-SAFT
  • 8.3.1.2.3.1.1 Hard-chain Reference Fluid
  • 8.3.1.2.3.1.2 Dispersion Interactions
  • 8.3.1.2.3.1.3 Association Interactions
  • 8.3.1.3 Iterative Method (K-value Method)
  • 8.4 HYDRATE DEPOSITION
  • 8.5 HYDRATE INHIBITIONS
  • 8.5.1 Calculating the Amount of Hydrate Inhibitors
  • 8.5.1.1 The Hammerschmidt Method
  • 8.5.1.2 The Nielsen-Bucklin Method
  • 8.5.1.3 McCain Method
  • 8.5.1.4 Østergaard et al. (2005)
  • 8.5.2 Calculating Inhibitor Loss in Hydrocarbon Phase
  • 8.5.3 Inhibitor Injection Rates
  • Problems
  • REFERENCES
  • Nine - Characterization of Shale Gas
  • 9.1 INTRODUCTION
  • 9.2 SHALE GAS RESERVOIR CHARACTERISTICS
  • 9.3 BASIC SCIENCE BEHIND CONFINEMENT
  • 9.3.1 Impact of Confinement on Critical Properties
  • 9.3.2 Diffusion Effect Due to Confinement
  • 9.3.3 Capillary Pressure
  • 9.3.4 Adsorption Phenomenon in Shale Reservoirs
  • 9.4 EFFECT OF CONFINEMENT ON PHASE ENVELOPE
  • Problems
  • REFERENCES
  • Ten - Characterization of Shale Oil
  • 10.1 INTRODUCTION
  • 10.2 TYPES OF FLUIDS IN SHALE RESERVOIRS AND GENESIS OF LIQUID IN SHALE PORES
  • 10.3 SHALE PORE STRUCTURE AND HETEROGENEITY
  • 10.4 SHALE OIL EXTRACTION
  • 10.4.1 History
  • 10.4.2 Processing Principles
  • 10.4.3 Extraction Technologies
  • 10.5 INCLUDING CONFINEMENT IN THERMODYNAMICS
  • 10.5.1 Classical Thermodynamics
  • 10.5.1.1 Equation of State
  • 10.5.1.2 Condition of Equilibrium
  • 10.5.1.3 Vapor-Liquid Equilibrium/Flash Computation
  • 10.5.2 Modification of Flash to Incorporate Capillary Pressure in Tight Pores
  • 10.5.3 Stability Test Using Gibbs Free Energy Approach.
  • 10.5.4 Impact of Critical Property Shifts Due to Confinement on Hydrocarbon Production.