Fluid phase behavior for conventional and unconventional oil and gas reservoirs
Fluid Phase Behavior for Conventional and Unconventional Oil and Gas Reservoirs delivers information on the role of PVT (pressure-volume-temperature) tests/data in various aspects, in particular reserve estimation, reservoir modeling, flow assurance, and enhanced oil recovery for both conventional a...
Other Authors: | |
---|---|
Format: | eBook |
Language: | Inglés |
Published: |
Amsterdam, [Netherlands] :
Gulf Professional Publishing
2017.
|
Edition: | 1st edition |
Subjects: | |
See on Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630332706719 |
Table of Contents:
- Front Cover
- Fluid Phase Behavior for Conventional and Unconventional Oil and Gas Reservoirs
- Fluid Phase Behaviorfor Conventional and Unconventional Oiland Gas Reservoirs
- Copyright
- Dedication
- CONTENTS
- LIST OF CONTRIBUTORS
- BIOGRAPHY
- PREFACE
- ACKNOWLEDGMENTS
- One - Oil and Gas Properties and Correlations
- 1.1 INTRODUCTION
- 1.2 CRUDE OIL PROPERTIES
- 1.2.1 Oil Density
- 1.2.1.1 Equation of State Method
- 1.2.1.2 Alani-Kennedy Equation
- 1.2.1.3 Standing-Katz Method
- 1.2.1.4 American Petroleum Institute Method
- 1.2.1.5 Other Methods
- 1.2.2 Oil Gravity
- 1.2.3 Oil Compressibility
- 1.2.3.1 Vasquez and Beggs Correlation
- 1.2.3.2 Petrosky Correlation
- 1.2.4 Oil Bubble Point Pressure
- 1.2.4.1 Standing Correlation
- 1.2.4.2 Vasquez and Beggs Correlation
- 1.2.4.3 Al-Marhoun Correlation
- 1.2.4.4 Glaso Correlation
- 1.2.4.5 Petrosky Correlation
- 1.2.5 Solution Gas Oil Ratio
- 1.2.5.1 Standing Correlation
- 1.2.5.2 Vasquez-Beggs Correlation
- 1.2.5.3 Al-Marhoun Correlation
- 1.2.5.4 Glaso Correlation
- 1.2.5.5 Petrosky Correlation
- 1.2.6 Oil Formation Volume Factor
- 1.2.6.1 Standing Correlation
- 1.2.6.2 Vasquez and Beggs Correlation
- 1.2.6.3 Kartoatmodjo and Schmidt Correlation
- 1.2.6.4 Al-Marhoun Correlation
- 1.2.6.5 Glaso Correlation
- 1.2.6.6 Petrosky Correlation
- 1.2.6.7 Arps Correlation
- 1.2.7 Oil Viscosity
- 1.2.7.1 Corresponding State Method
- 1.2.7.2 Lohrenz-Bary-Clark Method
- 1.2.7.3 Quiñones-Cisneros et al. Method
- 1.2.7.4 Vasquez and Beggs Correlation
- 1.2.7.5 Glaso Correlation
- 1.2.7.6 Chew and Connally Correlation
- 1.2.7.7 Beggs and Robinson Correlation
- 1.2.7.8 Beal Correlation
- 1.3 GAS PROPERTIES
- 1.3.1 Gas Density
- 1.3.1.1 Theoretical Determination of Gas Density
- 1.3.2 Gas Compressibility
- 1.3.3 Gas Formation Volume Factor.
- 1.3.4 Total Formation Volume Factor
- 1.3.4.1 Al-Marhoun Correlation
- 1.3.4.2 Glaso Correlation
- 1.3.5 Gas Viscosity
- 1.3.5.1 Carr et al. Method
- 1.3.5.2 Lee et al. Method
- 1.4 INTERFACIAL TENSION
- 1.4.1 Parachor Model
- Problems
- REFERENCES
- Two - Equations of State
- 2.1 INTRODUCTION
- 2.2 CUBIC EQUATION OF STATE (EOS)
- 2.3 NONCUBIC EOS
- 2.4 CORRESPONDING STATE CORRELATIONS
- 2.5 MIXING RULES
- Problems
- REFERENCES
- Three - Plus Fraction Characterization
- 3.1 INTRODUCTION
- 3.2 EXPERIMENTAL METHODS
- 3.2.1 True Boiling Point Distillation Method
- 3.2.2 Chromatography
- 3.3 SPLITTING METHODS
- 3.3.1 Katz Method
- 3.3.2 Pedersen Method
- 3.3.3 Gamma Distribution Method
- 3.4 PROPERTIES ESTIMATION
- 3.4.1 Watson Characterization Factor Estimation
- 3.4.2 Boiling Point Estimation
- 3.4.3 Critical Properties and Acentric Factor Estimation
- 3.4.4 Molecular Weight Estimation
- 3.4.5 Specific Gravity Estimation
- 3.5 RECOMMENDED PLUS FRACTION CHARACTERIZATION PROCEDURE
- Problems
- REFERENCES
- Four - Tuning Equations of State
- 4.1 MATCHING THE SATURATION PRESSURE USING THE EXTENDED GROUPS
- 4.2 GROUPING METHODS
- 4.2.1 Whitson Method
- 4.2.2 Pedersen et al. Method (Equal Weight Method)
- 4.2.3 The Cotterman and Prausnitz Method (Equal Mole Method)
- 4.2.4 Danesh et al. Method
- 4.2.5 The Aguilar and McCain Method
- 4.3 COMPOSITION RETRIEVAL
- 4.4 ASSIGNING PROPERTIES TO MULTIPLE CARBON NUMBER
- 4.5 MATCHING THE SATURATION PRESSURE USING THE GROUPED COMPOSITION
- 4.6 VOLUME TRANSLATION
- Problems
- REFERENCES
- Five - Vapor-Liquid Equilibrium (VLE) Calculations
- 5.1 AN INTRODUCTION TO EQUILIBRIUM
- 5.2 FLASH CALCULATIONS
- 5.3 METHODS OF FINDING K-VALUE
- 5.3.1 Ideal Concept
- 5.3.1.1 Lewis Fugacity Rule
- 5.3.1.2 Raoult's Law
- 5.3.1.3 Henry's Law.
- 5.3.2 Fugacity-Derived Equilibrium Ratio (φ−φ Approach)
- 5.3.3 Activity-Derived Equilibrium Ratios (γ−φ Approach)
- 5.3.4 Correlations for Finding Equilibrium Ratio
- 5.3.4.1 Wilson's Correlation
- 5.3.4.2 Standing's Correlation
- 5.3.4.3 Whitson and Torp Correlation
- 5.4 BUBBLE AND DEW-POINT CALCULATIONS
- 5.5 A DISCUSSION ON THE STABILITY
- 5.6 MULTIPHASE FLASH CALCULATIONS
- 5.7 CALCULATION OF SATURATION PRESSURES WITH STABILITY ANALYSIS
- 5.8 IDENTIFYING PHASES
- Problems
- REFERENCES
- six - Fluid Sampling
- 6.1 INTRODUCTION
- 6.2 SAMPLING METHOD
- 6.2.1 Subsurface Sampling
- 6.2.1.1 Bottom-Hole Samplers
- 6.2.1.2 Formation Testers
- 6.2.1.3 Surface Sampling
- 6.2.1.4 Wellhead Sampling
- 6.2.1.5 Relative Advantages of Subsurface and Surface Sampling
- 6.3 RECOMBINATION
- 6.3.1 Case 1
- 6.3.2 Case 2
- 6.3.3 Case 3
- 6.3.4 Case 4
- 6.4 PVT TESTS
- 6.4.1 Differential Test
- 6.4.2 Swelling Test
- 6.4.3 Separator Test
- 6.4.4 Constant Composition Test
- 6.4.5 Constant Volume Depletion
- 6.4.6 Differential Liberation Test
- 6.5 FLASH CALCULATION
- Problems
- REFERENCES
- Seven - Retrograde Gas Condensate
- 7.1 INTRODUCTION
- 7.2 GAS-CONDENSATE FLOW REGIONS
- 7.2.1 Condensate Blockage
- 7.2.2 Composition Change and Hydrocarbon Recovery
- 7.3 EQUATIONS OF STATE
- 7.3.1 Van der Waals's Equation of State
- 7.3.2 Soave-Redlich-Kwong Equation of State
- 7.3.3 The Soave-Redlich-Kwong-Square Well Equation of State
- 7.3.4 Peng-Robinson Equation of State
- 7.3.5 Peng-Robinson-Gasem Equation of State
- 7.3.6 Nasrifar and Moshfeghian (NM) Equation of State
- 7.3.7 Schmidt and Wenzel Equation of State
- 7.3.8 The Patel-Teja Equation of State and Modifications
- 7.3.9 Mohsen-Nia-Modarress-Mansoori Equation of State
- 7.3.10 Adachi-Lu-Sugie Equation of State
- 7.4 MIXING RULES
- 7.5 HEAVY FRACTIONS.
- 7.6 GAS PROPERTIES
- 7.6.1 Viscosity
- 7.6.1.1 Empirical Correlations
- 7.6.1.1.1 Lee-Gonzalez-Eakin Method (1966)
- 7.6.1.1.2 Dempsey's Standing Method (1965)
- 7.6.1.1.3 Chen and Ruth Method (1993)
- 7.6.1.1.4 Elsharkawy Method (2004)
- 7.6.1.1.5 Sutton Method (2007)
- 7.6.1.1.6 Shokir and Dmour Method (2009)
- 7.6.1.1.7 Sanjari-Nemati Lay-Peymani Method (2011)
- 7.6.2 Z Factor
- 7.6.2.1 Empirical Correlations
- 7.6.2.1.1 Papay (1968)
- 7.6.2.1.2 Beggs and Brill (1973)
- 7.6.2.1.3 Shell Oil Company
- 7.6.2.1.4 Bahadori et al. (2007)
- 7.6.2.1.5 Azizi et al. (2010)
- 7.6.2.1.6 Sanjari and Nemati Lay (2012)
- 7.6.2.1.7 Shokir et al. (2012)
- 7.6.2.1.8 Mahmoud (2014)
- 7.6.2.2 Equations of State
- 7.6.3 Density
- 7.6.3.1 Empirical Correlations
- 7.6.3.1.1 Nasrifar and Moshfeghian
- 7.6.3.2 Equation of State
- 7.6.4 Formation Volume Factor
- 7.6.5 Equilibrium Ratio
- 7.6.5.1 Equilibrium Ratio for Hydrocarbon Mixtures
- 7.6.5.1.1 Wilson's Correlation
- 7.6.5.1.2 Standing's Correlation
- 7.6.5.1.3 Whitson and Torp's Method
- 7.6.5.2 Equilibrium Ratio for Nonhydrocarbon Mixtures
- 7.6.6 Dew-Point Pressure
- 7.6.6.1 Empirical Correlations
- 7.6.6.1.1 Nemeth and Kennedy (1967)
- 7.6.6.1.2 Elsharkawy (2002)
- 7.6.6.1.3 Humoud and Al-Marhoun (2001)
- 7.6.6.1.4 Alternating Conditional Expectations
- 7.6.6.1.4.1 Marruffo-Maita-Him-Rojas (2002)
- 7.6.6.2 Iterative Method
- Problems
- REFERENCES
- Eight - Gas Hydrates
- 8.1 INTRODUCTION
- 8.2 TYPES AND PROPERTIES OF HYDRATES
- 8.3 THERMODYNAMIC CONDITIONS FOR HYDRATE FORMATION
- 8.3.1 Calculating Hydrate Formation Condition
- 8.3.1.1 Correlations
- 8.3.1.1.1 Makogon (1981)
- 8.3.1.1.2 Kobayashi et al. (1987)
- 8.3.1.1.3 Motiee (1991)
- 8.3.1.1.4 Østergaard et al. (2000)
- 8.3.1.1.5 Sun et al. (2003)
- 8.3.1.1.6 Towler and Mokhatab (2005).
- 8.3.1.1.7 Bahadori and Vuthaluru (2009)
- 8.3.1.2 Equation of States
- 8.3.1.2.1 The Cubic-Plus-Association Equation of State
- 8.3.1.2.2 Peng-Robinson Equation of State
- 8.3.1.2.3 Perturbed Chain-Statistical Associating Fluid Theory
- 8.3.1.2.3.1 Mathematical Formulation of PC-SAFT
- 8.3.1.2.3.1.1 Hard-chain Reference Fluid
- 8.3.1.2.3.1.2 Dispersion Interactions
- 8.3.1.2.3.1.3 Association Interactions
- 8.3.1.3 Iterative Method (K-value Method)
- 8.4 HYDRATE DEPOSITION
- 8.5 HYDRATE INHIBITIONS
- 8.5.1 Calculating the Amount of Hydrate Inhibitors
- 8.5.1.1 The Hammerschmidt Method
- 8.5.1.2 The Nielsen-Bucklin Method
- 8.5.1.3 McCain Method
- 8.5.1.4 Østergaard et al. (2005)
- 8.5.2 Calculating Inhibitor Loss in Hydrocarbon Phase
- 8.5.3 Inhibitor Injection Rates
- Problems
- REFERENCES
- Nine - Characterization of Shale Gas
- 9.1 INTRODUCTION
- 9.2 SHALE GAS RESERVOIR CHARACTERISTICS
- 9.3 BASIC SCIENCE BEHIND CONFINEMENT
- 9.3.1 Impact of Confinement on Critical Properties
- 9.3.2 Diffusion Effect Due to Confinement
- 9.3.3 Capillary Pressure
- 9.3.4 Adsorption Phenomenon in Shale Reservoirs
- 9.4 EFFECT OF CONFINEMENT ON PHASE ENVELOPE
- Problems
- REFERENCES
- Ten - Characterization of Shale Oil
- 10.1 INTRODUCTION
- 10.2 TYPES OF FLUIDS IN SHALE RESERVOIRS AND GENESIS OF LIQUID IN SHALE PORES
- 10.3 SHALE PORE STRUCTURE AND HETEROGENEITY
- 10.4 SHALE OIL EXTRACTION
- 10.4.1 History
- 10.4.2 Processing Principles
- 10.4.3 Extraction Technologies
- 10.5 INCLUDING CONFINEMENT IN THERMODYNAMICS
- 10.5.1 Classical Thermodynamics
- 10.5.1.1 Equation of State
- 10.5.1.2 Condition of Equilibrium
- 10.5.1.3 Vapor-Liquid Equilibrium/Flash Computation
- 10.5.2 Modification of Flash to Incorporate Capillary Pressure in Tight Pores
- 10.5.3 Stability Test Using Gibbs Free Energy Approach.
- 10.5.4 Impact of Critical Property Shifts Due to Confinement on Hydrocarbon Production.