Beginning Data Science in R Data Analysis, Visualization, and Modelling for the Data Scientist
Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. This book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R. Data Science...
Autor principal: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Berkeley, CA :
Apress
2017.
|
Edición: | 1st ed. 2017. |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630326306719 |
Tabla de Contenidos:
- 1. Introduction to R programming
- 2. Reproducible analysis
- 3. Data manipulation
- 4. Visualizing and exploring data
- 5. Working with large data sets
- 6. Supervised learning
- 7. Unsupervised learning
- 8. More R programming
- 9. Advanced R programming
- 10. Object oriented programming
- 11. Building an R package
- 12. Testing and checking
- 13. Version control
- 14. Profiling and optimizing.