Microfabrication and precision engineering research and development
Microfabrication and precision engineering is an increasingly important area relating to metallic, polymers, ceramics, composites, biomaterials and complex materials. Micro-electro-mechanical-systems (MEMS) emphasize miniaturization in both electronic and mechanical components. Microsystem products...
Other Authors: | , |
---|---|
Format: | eBook |
Language: | Inglés |
Published: |
Waltham, MA :
Elsevier
[2017]
|
Edition: | First edition |
Series: | Woodhead Publishing in mechanical engineering.
|
Subjects: | |
See on Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630320306719 |
Table of Contents:
- Front Cover
- Microfabrication and Precision Engineering
- Copyright Page
- Contents
- List of contributors
- About the editor
- Preface
- 1 Modeling of micro- and nano-scale cutting
- 1.1 Introduction
- 1.2 Modeling of microscale cutting
- 1.2.1 Minimum chip thickness and size effect
- 1.2.2 FEM modeling of microscale cutting
- 1.2.3 FEM basics
- 1.2.4 FEM cutting models
- 1.2.5 Friction modeling
- 1.2.6 Material modeling
- 1.3 Modeling of nanoscale cutting
- 1.3.1 Model geometry and material microstructure
- 1.3.2 Potential function
- 1.3.3 Boundary conditions and input parameters
- 1.3.4 Numerical integration and equilibration
- Conclusions
- References
- 2 Machining scale: workpiece grain size and surface integrity in micro end milling
- 2.1 Introduction
- 2.2 Specific cutting energy
- 2.3 Size effect
- 2.4 Workpiece microstructure scale
- 2.5 Surface integrity
- 2.5.1 Burr formation
- 2.5.2 Chip formation
- 2.5.3 Roughness
- 2.5.4 Microhardness
- 2.5.5 Microstructural damages
- 2.5.6 Size effect
- References
- 3 Micromachining technique based on the orbital motion of the diamond tip
- 3.1 Introduction
- 3.2 Principle of micromachining using the orbital motion of the diamond tip
- 3.3 Micromachining setup and test of the stage's trajectory
- 3.3.1 Establishment of the micromachining setup and the machining procedure
- 3.3.2 Test of the trajectory of the nanopiezo stage in the orbital motion
- 3.4 Micromachining mechanism using the orbital motion of the tip
- 3.4.1 Comparison of chip states with the conical and pyramidal tips
- 3.4.2 Difference between the micromilling process and this technique
- 3.4.3 Determination of the uncut chip thickness and the cutting rake angle
- 3.5 Formation mechanism and control methods of burrs
- 3.5.1 Burr formation during machining with the conical tip.
- 3.5.2 Burr formation during machining with the pyramidal tip
- 3.5.3 Methods of formation of slight burrs
- 3.6 Effects of the processing parameters and fabrication of microstructures
- 3.6.1 Effects of the processing parameters on machining microchannels
- 3.6.2 Effect of the feed on machining microstructures
- 3.6.3 Fabrication of typical microstructures
- 3.7 Summary and future works
- Acknowledgments
- References
- 4 Microelectrical discharge machining of Ti-6Al-4V: implementation of innovative machining strategies
- 4.1 Introduction
- 4.2 Principle of electrical discharge machining
- 4.3 Overview of micro-EDM
- 4.4 Differences between EDM and micro-EDM
- 4.5 System components of micro-EDM
- 4.5.1 Pulse generator
- 4.5.2 Servo control unit
- 4.5.3 Dielectric circulating unit
- 4.6 Micro-EDM process parameters
- 4.6.1 Electrical process parameters
- 4.6.1.1 Discharge energy
- 4.6.1.2 Gap and discharge voltage
- 4.6.1.3 Peak current
- 4.6.1.4 Pulse duration
- 4.6.1.5 Duty factor
- 4.6.1.6 Pulse frequency
- 4.6.1.7 Polarity
- 4.6.2 Nonelectrical process parameters
- 4.6.2.1 Tool electrodes
- 4.6.2.2 Workpiece materials
- 4.6.2.3 Dielectric fluids
- 4.6.3 Gap control and motion parameters
- 4.6.3.1 Servo feed
- 4.6.3.2 Electrode rotation
- 4.6.3.3 Tool geometry and shape
- 4.6.3.4 Workpiece and tool vibration
- 4.6.3.5 Types of dielectric flushing
- 4.6.3.6 Flushing pressure
- 4.7 Performance criteria in micro-EDM
- 4.7.1 Material removal rate
- 4.7.2 Electrode wear ratio
- 4.7.3 Surface roughness
- 4.7.4 Overcut
- 4.7.5 Diametral variance at entry and exit holes
- 4.7.6 Circularity
- 4.7.7 Machining time
- 4.8 Titanium alloys as advanced engineering materials
- 4.9 Literature review of micro-EDM of Ti-6Al-4V
- 4.10 Investigation of micro-EDM process employing innovative machining strategies.
- 4.10.1 Changing the polarity of electrodes
- 4.10.1.1 Experimental method and conditions
- 4.10.1.2 Experimental results and analysis
- 4.10.2 Rotating the microtool electrode
- 4.10.2.1 Experimental method and conditions
- 4.10.2.2 Experimental results and analysis
- 4.10.3 Comparative study of using kerosene and deionized water dielectrics
- 4.10.3.1 Experimental method and conditions
- 4.10.3.2 Experimental results and analysis
- 4.10.4 Comparative study of mixing a boron carbide additive in dielectrics
- 4.10.4.1 Experimental method and conditions
- 4.10.4.2 Experimental results and analysis
- Conclusions
- Acknowledgements
- References
- 5 Microelectrochemical machining: principle and capabilities
- 5.1 Fundamentals of microelectrochemical machining
- 5.1.1 Principle of electrochemical machining
- 5.1.2 Microelectrochemical machining using ultra-short pulsed current
- 5.1.3 Miniaturization of cathode tool
- 5.2 Variety of micro-ECM processes
- 5.2.1 Microelectrochemical drilling
- 5.2.2 Microelectrochemical milling
- 5.2.3 Through-mask microelectrochemical machining
- 5.2.4 Microwire electrochemical machining
- 5.2.5 Microelectrochemical jet machining
- 5.3 Hybrid processes associated with microelectrochemical machining
- 5.3.1 Laser-induced electrochemical jet machining
- 5.3.2 Abrasive enhanced electrochemical jet machining
- 5.3.3 Process combining EDM with ECM
- 5.4 Conclusions
- Acknowledgment
- References
- 6 Microchannel fabrication via direct laser writing
- 6.1 Introduction
- 6.2 Important materials for MEMS and microfluidic devices
- 6.2.1 Metals and alloys
- 6.2.2 Semiconductors, composites, and specially developed materials
- 6.2.3 Glass and polymer-based materials
- 6.3 Lasers for microfabrication
- 6.3.1 Timescale based division
- 6.3.1.1 Continuous wave laser
- 6.3.1.2 Short pulse lasers.
- 6.3.1.3 Ultrashort pulse lasers
- 6.3.2 Wavelength based division
- 6.3.2.1 Mid infrared lasers (mid IR)
- 6.3.2.2 Infrared lasers (IR lasers)
- 6.3.2.3 Ultraviolet lasers (UV lasers)
- 6.4 Material removal mechanisms
- 6.4.1 Thermal ablation
- 6.4.2 Cold ablation/photochemical ablation/photo ablation
- 6.5 Laser microprocessing of materials
- 6.5.1 Direct laser micromachining in open surroundings
- 6.5.1.1 Metals and alloys
- 6.5.1.2 Semiconductors, composites, and specially developed materials
- 6.5.1.3 Glass and polymers
- 6.5.2 Direct laser micromachining in different surrounding conditions
- 6.6 Challenges and future of laser processing
- References
- 7 Underwater pulsed laser beam cutting with a case study
- 7.1 Introduction
- 7.2 Laser as a machine tool
- 7.3 Laser material interaction
- 7.4 Laser beam cutting
- 7.4.1 Process characteristics
- 7.4.2 Cut quality characteristics
- 7.4.3 Principles of laser beam cutting
- 7.4.3.1 Different types of laser beam cutting
- 7.4.3.1.1 Laser sublimation cutting
- 7.4.3.1.2 Controlled fracture technique
- 7.4.3.1.3 Laser fusion cutting
- 7.4.3.1.4 Reactive fusion cutting
- 7.4.3.1.5 Laser cutting at different assisted medium
- 7.4.3.1.6 Laser beam microcutting
- 7.4.4 Application of laser beam machining
- 7.5 Underwater laser beam machining
- 7.5.1 Advantages of laser beam cutting at submerged condition
- 7.5.2 Material removal mechanism of nanosecond pulsed laser beam cutting at submerged condition
- 7.5.3 Development of different types of liquid-assisted laser beam machining
- 7.5.3.1 Laser beam cutting in submerged condition
- 7.5.3.2 Underwater assist gas jet/waterjet assisted laser beam cutting
- 7.5.3.3 Molten salt-jet-guided/chemical laser beam
- 7.5.3.4 Water jet following the laser beam.
- 7.5.3.5 Laser beam cutting of opaque material at partially submerged condition
- 7.5.3.6 Laser beam cutting of transparent material at partially submerged condition
- 7.5.3.7 Hybrid waterjet laser cutting
- 7.6 Pulsed IR laser ablation of Inconel 625 superalloy at submerged condition: A case study
- 7.6.1 Experimental setup
- 7.6.2 Development of mathematical model
- 7.6.3 ANOVA analysis
- 7.6.4 Effects of different process parameters on machining responses
- 7.6.4.1 Effect of different process parameters on kerf width
- 7.6.4.2 Effect of different process parameters on depth of cut
- 7.6.4.3 Effect of different process parameters on HAZ width
- Conclusion
- Acknowledgment
- References
- 8 Glass molding process for microstructures
- 8.1 Application of microstructures
- 8.1.1 Optical imaging in an optical system
- 8.1.1.1 Refraction
- 8.1.1.2 Diffraction
- 8.1.2 Positioning sensor in machine tools and measurement equipment
- 8.1.2.1 Linear grating
- 8.1.2.2 Face grating
- 8.1.3 Micro fluid control in a biomedical field
- 8.2 Fundamental of glass molding technique
- 8.2.1 Introduction
- 8.2.2 Materials suited for optical microstructures molding
- 8.2.2.1 Polymethyl methacrylate
- 8.2.2.2 Low-melting optical glass
- 8.2.2.3 Infrared Materials
- 8.2.3 Mold material
- 8.2.3.1 Commonly used mold material
- 8.2.3.2 Mold machining method
- 8.2.3.3 New mold plating material
- 8.3 Modeling and simulation of microstructure molding
- 8.3.1 Modeling of viscoelastic constitutive
- 8.3.1.1 The Maxwell model
- Creep
- Relaxation
- Recovery
- 8.3.1.2 The Kelvin model
- Creep
- Relaxation
- Recovery
- 8.3.1.3 The Burger model
- 8.3.2 Simulation of microstructure molding process
- 8.3.2.1 2D modeling
- 8.3.2.2 3D modeling
- 8.3.3 GMP simulation coupling heat transfer and viscous deformation.
- 8.3.3.1 Theoretical models of heat transfer and viscous deformation.