Microfabrication and precision engineering research and development

Microfabrication and precision engineering is an increasingly important area relating to metallic, polymers, ceramics, composites, biomaterials and complex materials. Micro-electro-mechanical-systems (MEMS) emphasize miniaturization in both electronic and mechanical components. Microsystem products...

Full description

Bibliographic Details
Other Authors: Davim, J, author (author), Davim, J. Paulo, editor (editor)
Format: eBook
Language:Inglés
Published: Waltham, MA : Elsevier [2017]
Edition:First edition
Series:Woodhead Publishing in mechanical engineering.
Subjects:
See on Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630320306719
Table of Contents:
  • Front Cover
  • Microfabrication and Precision Engineering
  • Copyright Page
  • Contents
  • List of contributors
  • About the editor
  • Preface
  • 1 Modeling of micro- and nano-scale cutting
  • 1.1 Introduction
  • 1.2 Modeling of microscale cutting
  • 1.2.1 Minimum chip thickness and size effect
  • 1.2.2 FEM modeling of microscale cutting
  • 1.2.3 FEM basics
  • 1.2.4 FEM cutting models
  • 1.2.5 Friction modeling
  • 1.2.6 Material modeling
  • 1.3 Modeling of nanoscale cutting
  • 1.3.1 Model geometry and material microstructure
  • 1.3.2 Potential function
  • 1.3.3 Boundary conditions and input parameters
  • 1.3.4 Numerical integration and equilibration
  • Conclusions
  • References
  • 2 Machining scale: workpiece grain size and surface integrity in micro end milling
  • 2.1 Introduction
  • 2.2 Specific cutting energy
  • 2.3 Size effect
  • 2.4 Workpiece microstructure scale
  • 2.5 Surface integrity
  • 2.5.1 Burr formation
  • 2.5.2 Chip formation
  • 2.5.3 Roughness
  • 2.5.4 Microhardness
  • 2.5.5 Microstructural damages
  • 2.5.6 Size effect
  • References
  • 3 Micromachining technique based on the orbital motion of the diamond tip
  • 3.1 Introduction
  • 3.2 Principle of micromachining using the orbital motion of the diamond tip
  • 3.3 Micromachining setup and test of the stage's trajectory
  • 3.3.1 Establishment of the micromachining setup and the machining procedure
  • 3.3.2 Test of the trajectory of the nanopiezo stage in the orbital motion
  • 3.4 Micromachining mechanism using the orbital motion of the tip
  • 3.4.1 Comparison of chip states with the conical and pyramidal tips
  • 3.4.2 Difference between the micromilling process and this technique
  • 3.4.3 Determination of the uncut chip thickness and the cutting rake angle
  • 3.5 Formation mechanism and control methods of burrs
  • 3.5.1 Burr formation during machining with the conical tip.
  • 3.5.2 Burr formation during machining with the pyramidal tip
  • 3.5.3 Methods of formation of slight burrs
  • 3.6 Effects of the processing parameters and fabrication of microstructures
  • 3.6.1 Effects of the processing parameters on machining microchannels
  • 3.6.2 Effect of the feed on machining microstructures
  • 3.6.3 Fabrication of typical microstructures
  • 3.7 Summary and future works
  • Acknowledgments
  • References
  • 4 Microelectrical discharge machining of Ti-6Al-4V: implementation of innovative machining strategies
  • 4.1 Introduction
  • 4.2 Principle of electrical discharge machining
  • 4.3 Overview of micro-EDM
  • 4.4 Differences between EDM and micro-EDM
  • 4.5 System components of micro-EDM
  • 4.5.1 Pulse generator
  • 4.5.2 Servo control unit
  • 4.5.3 Dielectric circulating unit
  • 4.6 Micro-EDM process parameters
  • 4.6.1 Electrical process parameters
  • 4.6.1.1 Discharge energy
  • 4.6.1.2 Gap and discharge voltage
  • 4.6.1.3 Peak current
  • 4.6.1.4 Pulse duration
  • 4.6.1.5 Duty factor
  • 4.6.1.6 Pulse frequency
  • 4.6.1.7 Polarity
  • 4.6.2 Nonelectrical process parameters
  • 4.6.2.1 Tool electrodes
  • 4.6.2.2 Workpiece materials
  • 4.6.2.3 Dielectric fluids
  • 4.6.3 Gap control and motion parameters
  • 4.6.3.1 Servo feed
  • 4.6.3.2 Electrode rotation
  • 4.6.3.3 Tool geometry and shape
  • 4.6.3.4 Workpiece and tool vibration
  • 4.6.3.5 Types of dielectric flushing
  • 4.6.3.6 Flushing pressure
  • 4.7 Performance criteria in micro-EDM
  • 4.7.1 Material removal rate
  • 4.7.2 Electrode wear ratio
  • 4.7.3 Surface roughness
  • 4.7.4 Overcut
  • 4.7.5 Diametral variance at entry and exit holes
  • 4.7.6 Circularity
  • 4.7.7 Machining time
  • 4.8 Titanium alloys as advanced engineering materials
  • 4.9 Literature review of micro-EDM of Ti-6Al-4V
  • 4.10 Investigation of micro-EDM process employing innovative machining strategies.
  • 4.10.1 Changing the polarity of electrodes
  • 4.10.1.1 Experimental method and conditions
  • 4.10.1.2 Experimental results and analysis
  • 4.10.2 Rotating the microtool electrode
  • 4.10.2.1 Experimental method and conditions
  • 4.10.2.2 Experimental results and analysis
  • 4.10.3 Comparative study of using kerosene and deionized water dielectrics
  • 4.10.3.1 Experimental method and conditions
  • 4.10.3.2 Experimental results and analysis
  • 4.10.4 Comparative study of mixing a boron carbide additive in dielectrics
  • 4.10.4.1 Experimental method and conditions
  • 4.10.4.2 Experimental results and analysis
  • Conclusions
  • Acknowledgements
  • References
  • 5 Microelectrochemical machining: principle and capabilities
  • 5.1 Fundamentals of microelectrochemical machining
  • 5.1.1 Principle of electrochemical machining
  • 5.1.2 Microelectrochemical machining using ultra-short pulsed current
  • 5.1.3 Miniaturization of cathode tool
  • 5.2 Variety of micro-ECM processes
  • 5.2.1 Microelectrochemical drilling
  • 5.2.2 Microelectrochemical milling
  • 5.2.3 Through-mask microelectrochemical machining
  • 5.2.4 Microwire electrochemical machining
  • 5.2.5 Microelectrochemical jet machining
  • 5.3 Hybrid processes associated with microelectrochemical machining
  • 5.3.1 Laser-induced electrochemical jet machining
  • 5.3.2 Abrasive enhanced electrochemical jet machining
  • 5.3.3 Process combining EDM with ECM
  • 5.4 Conclusions
  • Acknowledgment
  • References
  • 6 Microchannel fabrication via direct laser writing
  • 6.1 Introduction
  • 6.2 Important materials for MEMS and microfluidic devices
  • 6.2.1 Metals and alloys
  • 6.2.2 Semiconductors, composites, and specially developed materials
  • 6.2.3 Glass and polymer-based materials
  • 6.3 Lasers for microfabrication
  • 6.3.1 Timescale based division
  • 6.3.1.1 Continuous wave laser
  • 6.3.1.2 Short pulse lasers.
  • 6.3.1.3 Ultrashort pulse lasers
  • 6.3.2 Wavelength based division
  • 6.3.2.1 Mid infrared lasers (mid IR)
  • 6.3.2.2 Infrared lasers (IR lasers)
  • 6.3.2.3 Ultraviolet lasers (UV lasers)
  • 6.4 Material removal mechanisms
  • 6.4.1 Thermal ablation
  • 6.4.2 Cold ablation/photochemical ablation/photo ablation
  • 6.5 Laser microprocessing of materials
  • 6.5.1 Direct laser micromachining in open surroundings
  • 6.5.1.1 Metals and alloys
  • 6.5.1.2 Semiconductors, composites, and specially developed materials
  • 6.5.1.3 Glass and polymers
  • 6.5.2 Direct laser micromachining in different surrounding conditions
  • 6.6 Challenges and future of laser processing
  • References
  • 7 Underwater pulsed laser beam cutting with a case study
  • 7.1 Introduction
  • 7.2 Laser as a machine tool
  • 7.3 Laser material interaction
  • 7.4 Laser beam cutting
  • 7.4.1 Process characteristics
  • 7.4.2 Cut quality characteristics
  • 7.4.3 Principles of laser beam cutting
  • 7.4.3.1 Different types of laser beam cutting
  • 7.4.3.1.1 Laser sublimation cutting
  • 7.4.3.1.2 Controlled fracture technique
  • 7.4.3.1.3 Laser fusion cutting
  • 7.4.3.1.4 Reactive fusion cutting
  • 7.4.3.1.5 Laser cutting at different assisted medium
  • 7.4.3.1.6 Laser beam microcutting
  • 7.4.4 Application of laser beam machining
  • 7.5 Underwater laser beam machining
  • 7.5.1 Advantages of laser beam cutting at submerged condition
  • 7.5.2 Material removal mechanism of nanosecond pulsed laser beam cutting at submerged condition
  • 7.5.3 Development of different types of liquid-assisted laser beam machining
  • 7.5.3.1 Laser beam cutting in submerged condition
  • 7.5.3.2 Underwater assist gas jet/waterjet assisted laser beam cutting
  • 7.5.3.3 Molten salt-jet-guided/chemical laser beam
  • 7.5.3.4 Water jet following the laser beam.
  • 7.5.3.5 Laser beam cutting of opaque material at partially submerged condition
  • 7.5.3.6 Laser beam cutting of transparent material at partially submerged condition
  • 7.5.3.7 Hybrid waterjet laser cutting
  • 7.6 Pulsed IR laser ablation of Inconel 625 superalloy at submerged condition: A case study
  • 7.6.1 Experimental setup
  • 7.6.2 Development of mathematical model
  • 7.6.3 ANOVA analysis
  • 7.6.4 Effects of different process parameters on machining responses
  • 7.6.4.1 Effect of different process parameters on kerf width
  • 7.6.4.2 Effect of different process parameters on depth of cut
  • 7.6.4.3 Effect of different process parameters on HAZ width
  • Conclusion
  • Acknowledgment
  • References
  • 8 Glass molding process for microstructures
  • 8.1 Application of microstructures
  • 8.1.1 Optical imaging in an optical system
  • 8.1.1.1 Refraction
  • 8.1.1.2 Diffraction
  • 8.1.2 Positioning sensor in machine tools and measurement equipment
  • 8.1.2.1 Linear grating
  • 8.1.2.2 Face grating
  • 8.1.3 Micro fluid control in a biomedical field
  • 8.2 Fundamental of glass molding technique
  • 8.2.1 Introduction
  • 8.2.2 Materials suited for optical microstructures molding
  • 8.2.2.1 Polymethyl methacrylate
  • 8.2.2.2 Low-melting optical glass
  • 8.2.2.3 Infrared Materials
  • 8.2.3 Mold material
  • 8.2.3.1 Commonly used mold material
  • 8.2.3.2 Mold machining method
  • 8.2.3.3 New mold plating material
  • 8.3 Modeling and simulation of microstructure molding
  • 8.3.1 Modeling of viscoelastic constitutive
  • 8.3.1.1 The Maxwell model
  • Creep
  • Relaxation
  • Recovery
  • 8.3.1.2 The Kelvin model
  • Creep
  • Relaxation
  • Recovery
  • 8.3.1.3 The Burger model
  • 8.3.2 Simulation of microstructure molding process
  • 8.3.2.1 2D modeling
  • 8.3.2.2 3D modeling
  • 8.3.3 GMP simulation coupling heat transfer and viscous deformation.
  • 8.3.3.1 Theoretical models of heat transfer and viscous deformation.