Nanostructures for novel therapy synthesis, characterization and applications
Nanostructures for Novel Therapy: Synthesis, Characterization and Applications focuses on the fabrication and characterization of therapeutic nanostructures, in particular, synthesis, design, and in vitro and in vivo therapeutic evaluation. The chapters provide a cogent overview of recent therapeuti...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Boston, MA :
Elsevier
[2017]
|
Edición: | 1st edition |
Colección: | Micro & nano technologies.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630315606719 |
Tabla de Contenidos:
- Cover
- Title page
- Copyright
- Contents
- List of Contributors
- Foreword of the Series
- Preface
- About the Series (Volumes I-V)
- About Volume I
- Chapter 1 - Novel approaches for preparation of nanoparticles
- 1 - Introduction
- 1.1 - Evolution of Metal Nanoparticles in Pharmacy and Biotechnology
- 2 - Synthetic Methods for Preparation of Metal Nanoparticles
- 2.1 - Thermal Decomposition Method
- 2.2 - Sol-Gel Method
- 2.2.1 - Aqueous sol-gel method
- 2.2.2 - Nonaqueous sol-gel method
- 2.3 - Hydrothermal and Solvothermal Method
- 2.4 - Microwave-Assisted Method
- 2.5 - Polyol Method
- 2.6 - Sonochemical Method
- 2.7 - Liquid-Liquid Interface Method
- 2.8 - Phase-Transfer Method
- 2.9 - Biosynthesis Method
- 2.10 - Template-Directed Synthetic Method
- 3 - Application of Metal Nanoparticles in Theranostics
- 3.1 - Diagnosis and Drug Delivery
- 4 - Conclusions
- Acknowledgments
- References
- Chapter 2 - Applications of nanoscale drugs carriers in the treatment of chronic diseases
- 1 - Introduction in Drug Delivery and Targeting
- 1.1 - Passive and Active Targeting
- 1.2 - Smart Drug Delivery Systems-Drug Carriers
- 1.3 - Microparticle Carriers
- 1.4 - Smart Stimuli Responsive Drug Delivery Systems
- 1.4.1 - pH
- 1.4.2 - Temperature
- 1.4.3 - Light
- 1.4.4 - Electrical field
- 1.4.5 - Magnetic field
- 1.4.6 - Ultrasounds
- 2 - Applications of Nanotechnology in Drug Delivery and Targeting
- 2.1 - Targeted Drug Delivery for Cancer Therapy
- 2.1.1 - Drug nanocarriers
- 2.1.1.1 - Gold nanoparticles
- 2.1.1.2 - Silver nanoparticles
- 2.1.1.3 - Magnetic nanoparticles
- 2.1.1.4 - Quantum dots
- 2.1.1.5 - Mesoporous silica nanoparticles
- 2.2 - Targeted Drug Delivery for Cardiovascular Diseases
- 2.3 - Targeted Drug Delivery for Diabetes
- 3 - Conclusions
- References.
- Chapter 3 - Functionalization of nanoparticles in specific targeting and mechanism release
- 1 - Introduction
- 2 - Controlled-Release Mechanisms
- 2.1 - Extended Release
- 2.2 - Stimuli-Responsive Release
- 2.2.1 - pH-responsive nanocarriers
- 2.2.2 - Redox-responsive nanocarriers
- 2.2.3 - Enzyme-responsive nanocarriers
- 2.2.4 - Thermoresponsive nanocarriers
- 2.2.5 - Photoresponsive nanocarriers
- 2.2.6 - Sonic and ultrasonic-responsive nanocarriers
- 2.2.7 - Other stimuli-responsive nanocarriers
- 3 - Project of Nanoparticles
- 3.1 - Size and Shape
- 3.2 - Surface Properties
- 4 - Nanoparticles Targeting
- 4.1 - Passive Targeting
- 4.2 - Active Targeting
- 4.2.1 - Aptamers
- 4.2.2 - Small molecules
- 4.2.3 - Peptides
- 4.2.4 - Antibodies and their fragments
- 4.2.5 - Carbohydrates and glycoproteins
- 5 - Conclusions
- References
- Chapter 4 - Fabrication and characterization of natural/synthesized, micro-, and nanostructured materials for biomedical applic...
- 1 - Introduction
- 2 - Pearl Shell
- 2.1 - Macro- and Microstructures
- 3 - Microstructure Analysis of Nacre by Transmission Electron Microscopy
- 4 - Micro-/Nanoparticles
- 5 - Surface Modification of Nanoparticles
- 5.1 - Shape Control: Iron Oxide Nanocubes
- 5.2 - Shape-Induced Self-Assembly of Nanocubes
- 6 - 2D Periodic Structure by Thermal Imprinting Process
- 7 - Functionalities for Biomedical Applications
- 7.1 - Thermal Coagulation Therapy
- 7.1.1 - Mechanism for the heat generation
- 7.1.2 - Ferrite materials for thermal coagulation therapy
- 7.1.3 - Heat generation ability for Y3Fe5O12
- 7.1.4 - Preparation of microspheres for embolization method
- 7.2 - Apatite Formation
- 7.2.1 - TEM observation of HAp formation on nacre
- 7.2.2 - Effect of heat treatment of nacre on the HAp formation in SBF
- 7.3 - Dissolution of Pearl Particles.
- 8 - Summary and Future Directions
- References
- Chapter 5 - Multifunctional nanostructured biopolymeric materials for therapeutic applications
- 1 - Introduction
- 2 - Biopolymers
- 2.1 - Natural Biopolymers: Polysaccharides and Proteins
- 2.1.1 - Chitosan
- 2.1.2 - Cellulose
- 2.1.3 - Collagen
- 2.1.4 - Alginate
- 2.2 - Biopolymers From Biotechnology
- 2.2.1 - Polyglycolide
- 2.2.2 - Polylactic acid
- 2.2.3 - Polylactide-co-glycolide
- 2.3 - Biopolymers From Microorganisms
- 2.3.1 - Polyhydroxyalkanoates
- 2.4 - Biopolymers From Petrochemical Sources
- 2.4.1 - Polycaprolactone
- 2.4.2 - Polyurethanes
- 3 - Multifunctional Nanostructured Materials
- 3.1 - Shape-Controlled Nanostructures
- 3.2 - Nanocomposites
- 3.3 - Nanostructured Surface
- 4 - Therapeutic Applications
- 4.1 - Targeted Delivery
- 4.2 - Cancer Therapy
- 4.3 - Tissue Engineering
- 4.3.1 - Selection of a stem cell type
- 4.3.2 - Selection of a biomaterial with specific properties
- 4.3.3 - Selection of an "in vivo" or "ex vivo" strategy for generating/regenerating the tissue/organ
- 5 - Conclusions and Perspectives
- References
- Chapter 6 - Polymeric pharmaceutical nanoparticles developed by electrospray
- 1 - Introduction
- 2 - Polymeric Particles and Atomizers
- 2.1 - Polymer Nanoparticles
- 2.2 - Preparation of Particles
- 2.3 - Atomization
- 2.4 - Electrospray Advantages and Disadvantages
- 3 - Electrospray
- 3.1 - History of Electrohydrodynamic Atomization (Electrospraying and Electrospinning)
- 3.2 - Principles and Theoretical Aspects
- 3.2.1 - Basic principles
- 3.2.2 - Scaling laws for the size
- 3.3 - Electrospray Modes
- 3.4 - EHDA Configurations
- 3.5 - Particle Production by EHDA
- 3.5.1 - Particle production by monoaxial EHDA
- 3.5.2 - Particle production by coaxial EHDA (CEHDA)
- 3.6 - Effective Parameters in electrospray.
- 4 - Therapeutic Nanoparticles Loaded by Electrospray
- 4.1 - Single Needle EHDA Processing
- 4.1.1 - Particles
- 4.1.2 - Aerosols
- 4.1.3 - Porous particles
- 4.2 - Two-Needle Coaxial Electrospray
- 4.2.1 - Capsules
- 4.2.2 - Bubble particles
- 4.2.3 - Porous particles
- 4.2.4 - Hollow particles
- 4.3 - Multicapillary Electrospray
- 5 - Conclusions
- References
- Chapter 7 - Nanoformulation and administration of PUFA-rich systems for applications in modern healthcare
- 1 - Introduction
- 2 - Lipid Nanoparticles: Types and Fabrication Technology
- 2.1 - Nanoencapsulation
- 2.2 - Liposomes
- 2.3 - Nanocochleates
- 2.4 - Nanodispersions
- 2.5 - Micelles
- 2.6 - Nanoemulsions
- 2.7 - Multilayer Nanoemulsions
- 2.8 - Filled Hydrogel Particles
- 2.9 - Solid-Lipid Nanoparticles
- 2.10 - Nanostructured Lipid Carriers
- 3 - Understanding the Physiological System for Therapy: The Significance of Lipid Nanotechnology at Tissue and Cellular Level
- 3.1 - The Potential of Nanoparticles for Targeted Action at Tissue Level
- 3.1.1 - The gastrointestinal barrier
- 3.1.2 - The blood-brain barrier
- 3.2 - The Facets of Nanoparticle Play at Cellular Level
- 4 - Therapeutic Lipid Nanostructures
- 4.1 - For the Delivery of PUFAs
- 4.2 - Nanostructures for Cardiovascular Disease Treatment
- 4.3 - Nanostructures in Neurodegenerative Disease Treatment
- 4.4 - Nanostructures in Diabetes Management
- 4.5 - Nanostructures for Cancer Treatment
- 4.6 - Nanostructures for Infectious Diseases Treatment
- 4.7 - Nanostructures in Overcoming Proinflammatory Conditions
- 5 - Risk and Hazard Assessment
- 5.1 - Organic Solvents for Fabrication
- 5.2 - Potentially Hazardous Stabilizers and Surfactants
- 5.3 - Encapsulating Polymers
- 6 - Challenges and Scope
- 7 - Conclusions
- Acknowledgments
- References.
- Chapter 8 - Electrospinning and surface modification methods for functionalized cell scaffolds
- 1 - Electrospinning for Tissue Engineering
- 2 - Fundamentals of the Electrospinning Process
- 2.1 - Polymer Solution Parameters
- 2.1.1 - Polymer concentration
- 2.1.2 - Solvent volatility
- 2.1.3 - Solution conductivity
- 2.2 - Process Parameters
- 2.2.1 - Applied voltage
- 2.2.2 - Polymer flow rate
- 2.2.3 - Tip-collector distance
- 2.3 - Electrospun Fiber Materials
- 2.3.1 - Poly(glycolic acid) (PGA)
- 2.3.2 - Poly(lactic acid) (PLA)
- 2.3.3 - Poly(ε-caprolactone) (PCL)
- 2.3.4 - Poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)
- 2.3.5 - Collagen
- 2.3.6 - Elastin
- 3 - Tuning the Morphology of Electrospun Scaffolds and its Effects on Cell Behavior
- 3.1 - Fiber Uniformity
- 3.2 - Fiber Diameter
- 3.3 - Fiber Orientation
- 3.4 - Pore Size of Electrospun Scaffold
- 4 - Surface Modification Methods of Electrospun Nanofibers
- 4.1 - Loading Biomolecules
- 4.1.1 - Physical surface adsorption
- 4.1.2 - Blend electrospinning
- 4.1.3 - Core-shell electrospinning
- 4.1.4 - Covalent immobilization of bioactive molecules
- 4.2 - Plasma Treatment
- 4.3 - Surface Graft Copolymerization
- 5 - Conclusions
- References
- Chapter 9 - Short peptide self-assembled nanostructures for therapeutics innovative delivery
- 1 - Introduction
- 1.1 - The Advantages of Nanomaterials
- 1.2 - Self-Assembling Short Peptides as Nanomaterial Building Blocks
- 1.3 - Self-Assembling Short Peptides for Drug Delivery
- 2 - Preparation and Characterization of Self-Assembling Short Peptides
- 2.1 - Preparation of Short Peptides
- 2.2 - Characterization of Self-Assembling Short Peptides
- 3 - Drug-Delivery Applications
- 3.1 - Supramolecular Hydrogels as Systems for Drug Delivery.
- 3.2 - Physical Drug Entrapment in the Supramolecular Hydrogel Matrix.