Applications of nanofluid for heat transfer enhancement
Applications of Nanofluid for Heat Transfer Enhancement explores recent progress in computational fluid dynamic and nonlinear science and its applications to nanofluid flow and heat transfer. The opening chapters explain governing equations and then move on to discussions of free and forced convecti...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Boston, MA :
Elsevier
[2017]
|
Edición: | 1st edition |
Colección: | Micro & nano technologies.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630314606719 |
Tabla de Contenidos:
- Cover
- Title page
- Copyright
- Contents
- Preface
- Nomenclature
- Chapter 1 - Nanofluid: Definition and Applications
- 1.1 - Introduction
- 1.1.1 - Definition of nanofluid
- 1.1.2 - Model description
- 1.1.3 - Conservation equations
- 1.1.3.1 - Single-phase model
- 1.1.3.2 - Two-phase model
- 1.1.3.2.1 - Continuity equation
- 1.1.3.2.2 - Nanoparticle continuity equation
- 1.1.3.2.3 - Momentum equation
- 1.1.3.2.4 - Energy equation
- 1.1.4 - Physical properties of the nanofluids for single-phase model
- 1.1.4.1 - Density
- 1.1.4.2 - Specific heat capacity
- 1.1.4.3 - Thermal expansion coefficient
- 1.1.4.4 - The electrical conductivity
- 1.1.4.5 - Dynamic viscosity
- 1.1.4.6 - Thermal conductivity
- 1.2 - Simulation of nanofluid flow and heat transfer
- 1.2.1 - Semianalytical methods
- 1.2.2 - Runge-Kutta method
- 1.2.3 - Finite difference method
- 1.2.4 - Finite volume method
- 1.2.5 - Finite element method
- 1.2.6 - Control volume-based finite element method
- 1.2.7 - Lattice Boltzmann method
- References
- Chapter 2 - Nanofluid Natural Convection Heat Transfer
- 2.1 - CuO-water nanofluid hydrothermal analysis in a complex-shaped cavity
- 2.1.1 - Problem definition and mathematical model
- 2.1.1.1 - Problem definition
- 2.1.1.2 - Basic idea of CVFEM
- 2.1.2 - Effects of active parameters
- 2.2 - Natural convection heat transfer in a nanofluid filled inclined L-shaped enclosure
- 2.2.1 - Problem definition
- 2.2.2 - Effects of active parameters
- 2.3 - Natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder
- 2.3.1 - Problem definition
- 2.3.2 - Effects of active parameters
- 2.4 - Natural convection in a nanofluid filled concentric annulus between an outer square cylinder and an inner circular cy...
- 2.4.1 - Problem definition and mathematical model.
- 2.4.1.1 - Problem statement
- 2.4.1.2 - The lattice Boltzmann method
- 2.4.1.2.1 - Curved boundary treatment for velocity
- 2.4.1.2.2 - Curved boundary treatment for temperature
- 2.5 - The simulation of nanofluid in lattice Boltzmann model
- 2.4.2 - Effects of active parameters
- 2.5 - Natural convection in a nanofluid filled concentric annulus with inner elliptic cylinder using LBM
- 2.5.1 - Problem definition
- 2.5.2 - Effects of active parameters
- 2.6 - Natural convection in a nanofluid filled square cavity with curve boundaries
- 2.6.1 - Problem definition
- 2.6.2 - Effects of active parameters
- 2.7 - Nanofluid heat transfer enhancement and entropy generation
- 2.7.1 - Problem definition and governing equations
- 2.7.1.1 - Problem definition
- 2.7.1.2 - The lattice Boltzmann method
- 2.7.1.2.1 - Boundary conditions
- 2.7.1.2.2 - Second law analysis
- 2.7.2 - Effects of active parameters
- 2.8 - Two phase simulation of nanofluid flow and heat transfer using heatline analysis
- 2.8.1 - Problem definition
- 2.8.2 - Effects of active parameters
- References
- Chapter 3 - Nanofluid Forced Convection Heat Transfer
- 3.1 - Effect of nonuniform magnetic field on forced convection heat transfer of Fe3O4-water nanofluid
- 3.1.1 - Problem definition
- 3.1.2 - Effects of active parameters
- 3.2 - MHD nanofluid flow and heat transfer considering viscous dissipation
- 3.2.1 - Problem definition and mathematical model
- 3.2.1.1 - Problem definition
- 3.2.1.2 - Numerical method
- 3.2.2 - Effects of active parameters
- 3.3 - Forced convection heat transfer in a semiannulus under the influence of a variable magnetic field
- 3.3.1 - Problem definition
- 3.3.2 - Effects of active parameters
- 3.4 - MHD nanofluid flow and heat transfer considering viscous dissipation
- 3.4.1 - Problem definition and mathematical model.
- 3.4.1.1 - Problem definition
- 3.4.1.2 - Numerical method
- 3.4.2 - Effects of active parameters
- 3.5 - Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM
- 3.5.1 - Problem definition
- 3.5.2 - Semianalytical method
- 3.5.2.1 - Basic idea of DTM
- 3.5.2.2 - Application of DTM
- 3.5.3 - Effects of active parameters
- 3.6 - Effect of Lorentz forces on forced convection nanofluid flow over a stretched surface
- 3.6.1 - Problem definition and mathematical model
- 3.6.1.1 - Problem definition
- 3.6.1.2 - Numerical method
- 3.6.2 - Effects of active parameters
- 3.7 - Forced convective heat transfer of magnetic nanofluid in a double-sided, lid-driven cavity with a wavy wall
- 3.7.1 - Problem definition
- 3.7.2 - Effects of active parameters
- References
- Chapter 4 - Nanofluid Flow and Heat Transfer in the Presence of Thermal Radiation
- 4.1 - MHD free convection of Al2O3-water nanofluid considering thermal radiation
- 4.1.1 - Problem definition
- 4.1.2 - Effects of active parameters
- 4.2 - Unsteady nanofluid flow and heat transfer in the presence of magnetic field considering thermal radiation
- 4.2.1 - Problem definition
- 4.2.2 - Effects of active parameters
- 4.3 - Effect of thermal radiation on magnetohydrodynamic nanofluid flow and heat transfer by means of two-phase model
- 4.3.1 - Problem definition
- 4.3.2 - Effects of active parameters
- 4.4 - Ferrofluid flow and heat transfer in a semiannulus enclosure in the presence of magnetic source considering thermal r...
- 4.4.1 - Problem definition
- 4.4.2 - Effects of active parameters
- 4.5 - Nanofluid flow and heat transfer over a stretching porous cylinder considering thermal radiation
- 4.5.1 - Problem definition and mathematical model
- 4.5.1.1 - Problem definition
- 4.5.1.2 - Numerical method.
- 4.5.2 - Effects of active parameters
- References
- Chapter 5 - Nanofluid Flow and Heat Transfer in the Presence of Electric Field
- 5.1 - Electrohydrodynamic free convection heat transfer of a nanofluid in a semiannulus enclosure with a sinusoidal wall
- 5.1.1 - Problem definition
- 5.1.2 - Effects of active parameters
- 5.2 - Effect of electric field on hydrothermal behavior of nanofluid in a complex geometry
- 5.2.1 - Problem definition
- 5.2.2 - Effects of active parameters
- 5.3 - Electrohydrodynamic nanofluid flow and forced convective heat transfer in a channel
- 5.3.1 - Problem definition
- 5.3.2 - Effects of active parameters
- 5.4 - Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall
- 5.4.1 - Problem definition
- 5.4.2 - Effects of active parameters
- 5.5 - Electrohydrodynamic nanofluid force convective heat transfer considering electric field dependent viscosity
- 5.5.1 - Problem definition
- 5.5.2 - Effects of active parameters
- References
- Chapter 6 - Nanofluid Flow and Heat Transfer in the Presence of Constant Magnetic Field
- 6.1 - Entropy generation of nanofluid in the presence of magnetic field using lattice Boltzmann method
- 6.1.1 - Problem definition
- 6.1.2 - Effects of active parameters
- 6.2 - MHD natural convection in a nanofluid-filled inclined enclosure with sinusoidal wall using CVFEM
- 6.2.1 - Problem definition
- 6.2.2 - Effects of active parameters
- 6.3 - Effects of MHD on Cu-water nanofluid flow and heat transfer by means of CVFEM
- 6.3.1 - Problem definition
- 6.3.2 - Effects of active parameters
- 6.4 - Heat flux boundary condition for nanofluid-filled enclosure in the presence of magnetic field
- 6.4.1 - Problem definition
- 6.4.2 - Effects of active parameters.
- 6.5 - Magnetic field effect on nanofluid flow and heat transfer using KKL model
- 6.5.1 - Problem definition
- 6.5.2 - Effects of active parameters
- 6.6 - Magnetohydrodynamic free convection of Al2O3-water nanofluid considering thermophoresis and Brownian motion effects
- 6.6.1 - Problem definition
- 6.6.2 - Effects of active parameters
- 6.7 - Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering Lorentz forces
- 6.7.1 - Problem definition
- 6.7.2 - Effects of active parameters
- 6.8 - Three-dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid
- 6.8.1 - Problem definition
- 6.8.2 - Effects of active parameters
- 6.9 - Two-phase simulation of nanofluid flow and heat transfer in an annulus in the presence of an axial magnetic field
- 6.9.1 - Problem definition
- 6.9.2 - Effects of active parameters
- 6.10 - Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model
- 6.10.1 - Problem definition and semianalytical method
- 6.10.1.1 - Problem statement
- 6.10.1.2 - DTM solution
- 6.10.2 - Effects of active parameters
- 6.11 - Free convection of magnetic nanofluid considering MFD viscosity effect
- 6.11.1 - Problem definition
- 6.11.2 - Effects of active parameters
- References
- Chapter 7 - Nanofluid Flow and Heat Transfer in the Presence of Variable Magnetic Field
- 7.1 - Effect of space dependent magnetic field on free convection of Fe3O4-water nanofluid
- 7.1.1 - Problem definition
- 7.1.2 - Effects of active parameters
- 7.2 - Simulation of ferrofluid flow for magnetic drug targeting using lattice Boltzmann method
- 7.2.1 - Problem definition
- 7.2.2 - Effects of active parameters
- 7.3 - Magnetic nanofluid forced convective heat transfer in the existence of variable magnetic field using two-phase model.
- 7.3.1 - Problem definition.