Heat recovery steam generator technology

Heat Recovery Steam Generator Technology is the first fully comprehensive resource to provide readers with the fundamental information needed to understand HRSGs. The book's highly experienced editor has selected a number of key technical personnel to contribute to the book, also including burn...

Descripción completa

Detalles Bibliográficos
Otros Autores: Eriksen, Vernon, author (author), Eriksen, Vernon L., editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Royston Road, Duxford, Kidlington, England ; Cambridge, Massachusetts : Woodhead Publishing 2017.
Edición:1st edition
Colección:Woodhead Publishing in energy.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630303106719
Tabla de Contenidos:
  • Front Cover
  • Heat Recovery Steam Generator Technology
  • Copyright Page
  • Contents
  • List of contributors
  • 1 Introduction
  • Chapter outline
  • 1.1 Gas turbine-based power plants
  • 1.1.1 Advantages
  • 1.1.2 History
  • 1.1.3 Outlook
  • 1.2 Heat recovery steam generator (HRSG)
  • 1.2.1 Role of the HRSG in the power plant
  • 1.2.2 Characteristics
  • 1.2.3 Types of HRSGs
  • 1.2.3.1 Horizontal gas flow, vertical tube, natural circulation design
  • 1.2.3.2 Vertical gas flow, horizontal tube, forced circulation design
  • 1.2.3.3 Vertical gas flow, horizontal tube, natural circulation design
  • 1.2.3.4 Small once-through design
  • 1.2.3.5 Large once-through design
  • 1.2.3.6 Benson design
  • 1.2.3.7 Enhanced oil recovery design
  • 1.2.3.8 Very high fired design
  • 1.3 Focus and structure of book
  • References
  • 2 The combined cycle and variations that use HRSGs
  • Chapter outline
  • 2.1 Introduction
  • 2.2 Combining the Brayton and Rankine cycles
  • 2.3 The central role of HRSGs in combined cycle design
  • 2.3.1 Pressure levels
  • 2.3.2 Reheat
  • 2.3.3 Other decisions affecting heat recovery
  • 2.3.3.1 Amount of surface area
  • 2.3.3.2 Surface area sequencing
  • 2.3.3.3 Supplementary firing
  • 2.3.3.4 Stack temperature
  • 2.4 Power cycle variations that use HRSGs
  • 2.4.1 Cogeneration
  • 2.4.2 Steam power augmentation
  • 2.4.3 Integrated gasification combined cycle
  • 2.4.4 Solar hybrid
  • 2.5 Conclusion
  • Reference
  • 3 Fundamentals
  • Chapter outline
  • Nomenclature
  • Subscripts
  • 3.1 Thermal design
  • 3.1.1 Energy balance
  • 3.1.2 Economizer
  • 3.1.3 Superheater
  • 3.1.4 Supplemental firing
  • 3.1.5 Split superheater
  • 3.1.6 Multiple pressure systems
  • 3.1.7 Heat exchanger design
  • 3.1.7.1 Pressure drop
  • 3.1.7.2 Finned tubing
  • 3.1.7.3 Tube arrangement
  • 3.1.7.4 Two-phase flow
  • 3.1.7.5 Evaporation and circulation.
  • 3.1.7.6 Instability
  • 3.2 Mechanical design
  • 3.2.1 Nonpressure parts
  • 3.2.2 Pressure parts
  • 3.2.3 Tube vibration and acoustic resonance
  • References
  • 4 Vertical tube natural circulation evaporators
  • Chapter outline
  • 4.1 Introduction
  • 4.2 Evaporator design fundamentals
  • 4.2.1 Heat transfer/heat flux
  • 4.2.2 Natural circulation and circulation ratio
  • 4.2.3 Flow accelerated corrosion
  • 4.3 Steam drum design
  • 4.3.1 Drum water levels and volumes
  • 4.3.1.1 High high water level trip
  • 4.3.1.2 High water level alarm
  • 4.3.1.3 Normal water level
  • 4.3.1.4 Low water level alarm
  • 4.3.1.5 Low low water level trip
  • 4.3.2 Drum internals
  • 4.3.2.1 Primary separator
  • 4.3.2.2 Secondary separator
  • 4.4 Steam drum operation
  • 4.4.1 Continuous blowdown and intermittent blowoff systems
  • 4.4.2 Drum level control
  • 4.4.2.1 Single-element control
  • 4.4.2.2 Three-element control
  • 4.4.3 Startup drum level
  • 4.5 Specialty steam drums
  • 4.5.1 Multiple drum designs for fast start cycles
  • 4.5.2 Deaerators
  • 4.5.2.1 Integral floating pressure deaerator
  • 4.5.2.2 Remote deaerator
  • References
  • 5 Economizers and feedwater heaters
  • Chapter outline
  • 5.1 Custom design
  • 5.1.1 Full circuit
  • 5.1.2 Half circuit
  • 5.2 Standard design
  • 5.2.1 Full circuit
  • 5.2.2 Half circuit
  • 5.3 Flow distribution
  • 5.4 Mechanical details
  • 5.4.1 Tube orientation
  • 5.4.2 Venting
  • 5.4.3 Steaming
  • 5.4.4 Corrosion fatigue
  • 5.5 Feedwater heaters
  • 5.5.1 Concerns
  • 5.5.2 Feedwater heater arrangements
  • 5.5.3 Dew point monitoring
  • Reference
  • 6 Superheaters and reheaters
  • Chapter outline
  • 6.1 Introduction
  • 6.2 General description of superheaters
  • 6.2.1 Process steam
  • 6.2.2 Power plant steam turbine
  • 6.2.3 Steam purity vs various applications
  • 6.3 Design types and considerations.
  • 6.3.1 Tube External/Outside Heating Surface
  • 6.3.2 Staggered/inline
  • 6.3.3 Countercurrent/cocurrent/crossflow
  • 6.3.4 Headers/jumpers vs upper returns
  • 6.3.5 Circuitry
  • 6.3.6 Sliding/floating pressure operation
  • 6.3.7 Unfired/supplemental fired
  • 6.3.7.1 Burner in inlet duct
  • 6.3.7.2 Split superheater/reheater
  • 6.3.7.3 Screen evaporator
  • 6.3.7.4 Supplemental firing at combustion gas turbine part load
  • 6.3.7.5 Supplemental firing impact downstream of the high-pressure evaporator
  • 6.3.8 Bundle support types
  • 6.3.9 Tube-to-header connections
  • 6.4 Outlet temperature control
  • 6.4.1 Spraywater desuperheater
  • 6.4.1.1 Interstage
  • 6.4.1.2 Water source vs steam purity
  • 6.4.2 Steam bypass attemperator
  • 6.4.3 Mixing requirements for each
  • 6.5 Base load vs fast startup and/or high cycling
  • 6.6 Drainability and automation (coils, desuperheater, etc.)
  • 6.7 Flow distribution
  • 6.7.1 Steam side
  • 6.7.2 Gas side
  • 6.8 Materials
  • 6.9 Conclusions
  • 7 Duct burners
  • Chapter outline
  • 7.1 Introduction
  • 7.2 Applications
  • 7.2.1 Cogeneration
  • 7.2.2 Combined cycle
  • 7.2.3 Air heating
  • 7.2.4 Fume incineration
  • 7.2.5 Stack gas reheat
  • 7.3 Burner technology
  • 7.3.1 In-duct or inline configuration
  • 7.3.2 Grid configuration (gas firing)
  • 7.3.3 Grid configuration (liquid firing)
  • 7.4 Fuels
  • 7.4.1 Natural gas
  • 7.4.1.1 Refinery/chemical plant fuels
  • 7.4.1.2 Low heating value
  • 7.4.1.3 Liquid fuels
  • 7.5 Combustion air and turbine exhaust gas
  • 7.5.1 Temperature and composition
  • 7.5.2 Turbine power augmentation
  • 7.5.3 Velocity and distribution
  • 7.5.4 Ambient air firing (air-only systems and HRSG backup)
  • 7.5.5 Augmenting air
  • 7.5.6 Equipment configuration and TEG/combustion airflow straightening
  • 7.6 Physical modeling
  • 7.6.1 CFD modeling
  • 7.6.1.1 Wing geometry: variations
  • Flame holders.
  • Basic flame holder
  • Low-emissions design
  • 7.7 Emissions
  • 7.7.1 Visible plumes
  • 7.7.2 NOx and NO versus NO2
  • 7.7.3 CO, UBHC, SOx, and particulates
  • 7.7.3.1 Carbon monoxide
  • 7.7.3.2 Unburned hydrocarbons
  • 7.7.3.3 Sulfur dioxide
  • 7.7.3.4 Particulate matter
  • 7.8 Maintenance
  • 7.8.1 Accessories
  • 7.8.1.1 Burner management system
  • 7.8.1.2 Fuel train
  • 7.9 Design guidelines and codes
  • 7.9.1 NFPA 8506 (National Fire Protection Association)
  • 7.9.2 Factory mutual
  • 7.9.3 Underwriters' laboratories
  • 7.9.4 ANSI B31.1 and B31.3 (American National Standards Institute)
  • 7.9.5 Others
  • References
  • 8 Selective catalytic reduction for reduced NOx emissions
  • Chapter outline
  • 8.1 History of SCR
  • 8.2 Regulatory drivers
  • 8.3 Catalyst materials and construction
  • 8.4 Impact on HRSG design and performance
  • 8.4.1 SCR location within the HRSG
  • 8.4.1.1 Ammonium salt formation
  • 8.4.1.2 Sulfuric acid
  • 8.4.2 SCR configuration
  • 8.4.2.1 Ammonia oxidation to nitric oxide
  • 8.4.3 SCR support structure
  • 8.4.4 Performance impacts
  • 8.5 Drivers and advances in the SCR field
  • 8.5.1 Enhanced reliability and lower pressure loss
  • 8.5.2 Transient response
  • 8.5.3 Advancements in multifunction catalyst
  • 8.6 Future outlook for SCR
  • References
  • 9 Carbon monoxide oxidizers
  • Chapter outline
  • 9.1 Introduction
  • 9.2 Oxidation catalyst fundamentals
  • 9.2.1 Activity and selectivity
  • 9.2.2 Catalytic reaction pathway
  • 9.2.3 The effect of the rate limiting step
  • 9.3 The oxidation catalyst
  • 9.3.1 The active material
  • 9.3.2 The carrier
  • 9.3.3 The substrate
  • 9.3.4 Putting it all together
  • 9.4 The design
  • 9.4.1 Defining the problem
  • 9.4.2 Choosing the catalyst
  • 9.4.3 Determining the catalyst volume
  • 9.4.4 System considerations
  • 9.5 Operation and maintenance
  • 9.5.1 Initial commissioning.
  • 9.5.2 Stable operation
  • 9.5.3 Data analysis
  • 9.5.4 Catalyst deactivation mechanisms
  • 9.5.5 Catalyst characterization
  • 9.5.6 Reclaim
  • 9.6 Future trends
  • Supplemental reading
  • 10 Mechanical design
  • Chapter outline
  • 10.1 Introduction
  • 10.2 Code of design: mechanical
  • 10.3 Code of design: structural
  • 10.4 Owner's specifications and regulatory Body/organizational review
  • 10.5 Pressure parts
  • 10.5.1 Design methods
  • 10.5.2 Design parameters
  • 10.5.3 Material selection
  • 10.5.4 Mechanical component geometries and arrangements
  • 10.6 Mechanical design
  • 10.6.1 General information
  • 10.6.2 Internal "Hoop" stress
  • 10.6.3 Reinforced openings (compensation)
  • 10.6.4 Allowable design stress
  • 10.7 Pressure parts design flexibility
  • 10.7.1 General information
  • 10.7.2 Coil flexibility
  • 10.7.3 Material transitions (dissimilar metals)
  • 10.7.4 Others
  • 10.8 Structural components
  • 10.8.1 Dead loads
  • 10.8.2 Live loads
  • 10.8.3 Wind loads
  • 10.8.4 Seismic loads
  • 10.8.5 Operating and other loads
  • 10.9 Structural solutions
  • 10.9.1 Design philosophy
  • 10.9.2 Lateral force-resisting system
  • 10.9.3 Longitudinal force-resisting system
  • 10.9.4 Anchorage (embedments)
  • 10.9.5 Material selection
  • 10.10 Piping and support solutions
  • 10.11 Field erection and constructability
  • 10.12 Fabrication
  • 10.13 Conclusion
  • References
  • 11 Fast-start and transient operation
  • Chapter outline
  • 11.1 Introduction
  • 11.2 Components most affected
  • 11.3 Effect of pressure
  • 11.4 Change in temperature
  • 11.5 Materials
  • 11.6 Construction details
  • 11.7 Corrosion
  • 11.8 Creep
  • 11.9 HRSG operation
  • 11.9.1 Startup
  • 11.9.2 Shutdown and trips
  • 11.9.3 Load changes
  • 11.9.4 Layup
  • 11.10 Life assessments
  • 11.10.1 Methods
  • 11.10.2 Responsibilities
  • 11.10.3 Fast start
  • 11.10.4 Scope items for cycling.
  • 11.11 National Fire Protection Association purge credit.