Specifications of photovoltaic pumping systems in agriculture sizing, fuzzy energy management and economic sensitivity analysis
Specifications of Photovoltaic Pumping Systems in Agriculture: Sizing, Fuzzy Energy Management and Economic Sensitivity Analysis is the first book of its kind to discuss the physical installation and sizing of PV pumping systems, also providing a successful energy management operation and economic s...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier
2017.
|
Edición: | 1st edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630192506719 |
Tabla de Contenidos:
- Front Cover
- Specifications of Photovoltaic Pumping Systems in Agriculture
- Copyright Page
- Dedication
- Contents
- Foreword
- Acknowledgments
- Prologue
- 1 Renewable Energies and Irrigation
- 1.1 Introduction
- 1.2 Renewable Energies
- 1.2.1 Photovoltaic energy
- 1.2.1.1 Serial configuration
- 1.2.1.2 Parallel configuration
- 1.2.2 Thermal energy
- 1.2.2.1 Solar thermal energy
- 1.2.2.2 Geothermal energy
- 1.2.3 Wind energy
- 1.2.4 Wave energy
- 1.2.5 Hydraulic energy
- 1.2.6 Biomass energy
- 1.3 Renewable Energies for Irrigation
- 1.4 Tomatoes Irrigation
- 1.4.1 Climatic study
- 1.4.2 Soil data
- 1.4.3 Crop data
- 1.4.4 Irrigation intervals
- 1.5 Conclusions
- References
- 2 Modeling of the Photovoltaic Irrigation Plant Components
- 2.1 Introduction
- 2.2 Target System
- 2.3 System Modeling and Validation
- 2.3.1 System modeling
- 2.3.1.1 PVPs models
- Solar radiation model
- Solar declination
- Hour angle of the sun
- Extraterrestrial radiation and clearness index
- Solar radiation calculation
- Ambient temperature distribution model
- PVPs model
- Panel yield based model
- Panel nonlinear model
- MPPT techniques
- The lookup table MPPT
- The neuro-fuzzy MPPT
- The incremental conductance MPPT
- The P&
- O MPPT
- 2.3.1.2 Battery bank
- Linear model for the battery behavior description
- Coulomb-metric method
- The open-circuit method
- Nonlinear model for the battery behavior description
- 2.3.1.3 Chopper
- Function principle
- Continuous operating mode
- Discontinuous operating mode
- 2.3.1.4 Inverter
- 2.3.1.5 Pump
- 2.3.2 Experimental validation and modeling results
- 2.3.2.1 PVPs models
- 2.3.2.2 MPPT results
- 2.3.2.3 Battery bank model
- 2.3.2.4 Chopper model
- Inductor selection
- Capacitor selection
- Diode selection
- Switch selection
- Simulation results.
- 2.3.2.5 Inverter model
- 2.3.2.6 Pump
- 2.4 Conclusions
- References
- 3 Sizing Optimization of the Photovoltaic Irrigation Plant Components
- 3.1 Introduction
- 3.2 A Review on Sizing Algorithms in the Literature
- 3.3 Sizing Algorithm Proposal
- 3.3.1 Algorithm 3.1: determination of SM and nbatM
- 3.3.2 Algorithm 3.2: deduction of Sopt and Copt
- 3.4 Application to a Case Study
- 3.4.1 Sizing for the case study
- 3.4.2 Validation using measured climatic data
- 3.4.3 Validation using HOMER
- 3.4.4 Validation using PVsyst
- 3.4.5 Days of autonomy
- 3.5 Conclusions
- References
- 4 Optimum Energy Management of the Photovoltaic Irrigation Installation
- 4.1 Introduction
- 4.2 Review of Renewable Energy Management in Irrigation
- 4.2.1 Review of energy management methods
- 4.2.2 Fuzzy logic for energy management
- 4.3 Problem Formulation
- 4.4 Proposed EMA
- 4.4.1 Energy management strategy
- 4.4.2 Relays switching modes
- 4.4.3 Fuzzy EMA
- 4.4.3.1 Knowledge base
- PV power Ppv
- Battery dod
- Stored water volume ν
- Months M
- Water level L
- Power difference ΔP
- Relays Rl,Rb,Rlb
- 4.4.3.2 Fuzzification
- PV Power P˜pv
- Battery dod
- Water volume v
- Power difference ΔP
- Switching control of the relays Rl,Rb,Rlb
- 4.4.3.3 Inference diagram
- 4.4.3.4 Defuzzification
- 4.5 Application to a Case Study
- 4.5.1 Algorithm parameterization
- 4.5.1.1 PV power Ppv
- 4.5.1.2 Battery dod
- 4.5.1.3 Stored water volume v
- 4.5.2 Results and discussions
- 4.6 Experimental Validation
- 4.6.1 Installation description
- 4.6.2 Cases study validation
- 4.7 Conclusions
- References
- 5 Viability of DG, DG/PV and PV/ Batteries Plants for Water Pumping: Sensitivity Analysis According to Geographical and Eco...
- 5.1 Introduction
- 5.2 Water Pumping Systems Equipped With DG.
- 5.2.1 DG systems for water pumping systems
- 5.2.2 PV/DG systems
- 5.2.3 PV/batteries/DG systems
- 5.2.4 DG system
- 5.2.4.1 DG modeling
- Diesel engine system
- Synchronous generator
- Excitation system
- 5.2.4.2 DG modeling results
- 5.3 Economic Viability of PV/Batteries and Diesel Plants
- 5.3.1 Study of the costs of water pumping plants
- 5.3.1.1 Diesel water pumping system
- 5.3.1.2 PV-diesel water pumping system
- 5.3.1.3 PV-battery water pumping system
- 5.3.2 Evaluation of water pumping systems costs
- 5.4 Sensitivity Analysis of the Cost of Water Pumping Systems to the Geographic Parameters
- 5.5 Conclusion
- References
- 6 General Conclusion
- Appendix A: Photovoltaic Energy: Basic Principles
- A.1 Introduction
- A.1.1 Composition of light energy
- A.1.2 Sunlight on the earth
- A.1.3 Photovoltaic energy history
- A.2 Photovoltaic Effect Principle
- A.2.1 Description of the silicon atom
- A.2.2 Effect of light on silicon atoms
- A.2.3 Potential barrier principle
- A.3 Physical Aspects of Solar Cell Efficiency
- A.4 Solar Cell Making Technique
- A.5 PV Arrays
- References
- Appendix B: Centrifugal Water Pumps: Basic Principles
- B.1 Principle of Operation
- References
- Appendix C: The Induction Machine: Modeling and Control
- C.1 Space Vector Notion
- C.2 Reference Change
- C.3 Equations of the IM using the Space Vectors
- C.4 State Equations
- C.5 IM Direct Starting
- C.6 IM Control Using the RFOC Method
- References
- Index
- Back Cover.