Industrial applications of renewable plastics environmental, technological, and economic advances

Industrial Applications of Renewable Plastics: Environmental, Technological, and Economic Advances provides practical information to help engineers and materials scientists deploy renewable plastics in the plastics market. It explores the uses, possibilities, and problems of renewable plastics and c...

Descripción completa

Detalles Bibliográficos
Otros Autores: Biron, Michel, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Amsterdam, [Netherlands] : William Andrew 2017.
Edición:1st edition
Colección:PDL handbook series.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630176906719
Tabla de Contenidos:
  • Front Cover
  • INDUSTRIAL APPLICATIONS OF RENEWABLE PLASTICS
  • Series Page
  • INDUSTRIAL APPLICATIONS OF RENEWABLE PLASTICS: ENVIRONMENTAL, TECHNOLOGICAL,AND ECONOMIC ADVANCES
  • Copyright
  • Disclaimer
  • Contents
  • Preface
  • Chapter 1
  • Chapter 2
  • Chapter 3
  • Chapter 4
  • Chapter 5
  • Chapter 6
  • Chapter 7
  • Chapter 8
  • Chapter 9
  • Chapter 10
  • Acronyms and Abbreviations
  • 1 - Outline of the Actual Situation of Plastics Compared to Conventional Materials
  • 1.1 Polymers: The Industrial and Economic Reality Compared to Traditional Materials
  • 1.1.1 Plastic and Metal Consumption
  • 1.1.2 Mechanical Properties
  • 1.1.2.1 Intrinsic Mechanical Properties
  • 1.1.2.2 Specific Mechanical Properties
  • 1.1.3 Thermal and Electrical Properties
  • 1.1.4 Durability
  • 1.1.5 Material Costs
  • 1.1.5.1 Cost per Weight of Various Materials
  • 1.1.5.2 Cost per Volume of Various Materials
  • 1.1.5.3 Performance/Cost per Liter Ratios of Various Materials
  • 1.2 What Are Thermoplastics, Thermoplastic Elastomer, Thermosets, Composites, and Hybrids?
  • 1.2.1 Thermoplastics
  • 1.2.2 Thermoplastic Elastomers
  • 1.2.3 Thermosets
  • 1.2.4 Polymer Composites
  • 1.2.5 Hybrid Materials
  • 1.3 Plastics: An Answer to the Designer's Main Problems
  • 1.3.1 Economic Requirements
  • 1.3.2 Technical Requirements
  • 1.3.3 Marketing Requirements
  • 1.3.4 Sustainability and Environmental Requirements
  • 1.3.5 Some Weaknesses of Polymer Materials
  • 1.3.6 Waste Disposal: Recycling
  • 1.3.7 Beware: Health and Safety Concerns, Regulation Compliance
  • 1.4 Outline of the Technical and Economic Possibilities of Processing
  • 1.4.1 Thermoplastic Processing
  • 1.4.1.1 Molding Solid Thermoplastics
  • 1.4.1.2 Extrusion and Connected Processes
  • 1.4.1.3 Calendering
  • 1.4.1.4 Blow Molding
  • 1.4.1.5 Molding Liquid Thermoplastics
  • 1.4.1.6 Secondary Processing.
  • 1.4.1.7 Brief Economic Comparison of Some Processing Costs
  • 1.4.1.8 Repair Possibilities: A Significant Thermoplastic Advantage for Large Parts
  • 1.4.2 Thermoset Processing
  • 1.4.2.1 Molding Solid Thermosets
  • 1.4.2.2 Molding the Liquid Thermosets
  • 1.4.2.3 Secondary Processing
  • 1.4.3 Composite Processing
  • 1.4.3.1 Primary Processes
  • 1.4.3.2 Secondary Processing
  • 1.4.3.3 Repair Possibilities: A Significant Composite Advantage
  • 1.4.4 Hybrid Processing
  • 1.4.5 Additive Manufacturing Techniques for Prototyping and e-Manufacturing
  • 1.5 The Final Material/Process/Cost Compromise
  • 1.6 Useful Source Examples for Initiation of In-Depth Studies
  • Further Reading
  • Websites
  • Papers
  • 2 - Genesis of Renewable Plastics and Integration in the Plastics Stream
  • 2.1 Inescapable Strengthening of Environmental Concerns
  • 2.1.1 Toxicity and Pollution
  • 2.1.2 The Recycling of Polymers
  • 2.2 Development of Bioplastics From Renewable Sources
  • 2.2.1 Development of Biothermoplastics From Renewable Sources
  • 2.2.2 Development of Biothermosets From Renewable Sources
  • 2.3 Pros and Cons of Renewable and Oil-Sourced Plastics
  • 2.3.1 Renewable Plastics Derived From Natural Polymers
  • 2.3.2 Traditional Plastics From Bioblocks: Drop-In Solutions
  • 2.3.3 Traditional Plastics From Plastics Waste Recycling
  • 2.4 Brief Remarks on Processing and Recycling of Renewable Plastics
  • 2.5 Pay Close Attention to Carbon Biobased Content, Testing and Certification
  • 2.6 List of Commercial Offer Examples
  • 2.7 Examples of Useful Sources for Initiation of In-Depth Studies
  • Further Reading
  • Websites
  • 3 - Recycling: The First Source of Renewable Plastics
  • 3.1 Outline
  • 3.1.1 Environmental Benefits
  • 3.1.2 Economy
  • 3.1.2.1 Overview of Plastic Wastes in USA
  • 3.1.2.2 Overview of Plastic Wastes in Europe.
  • Recovery Costs: A Severe Obstacle to a Self-growing
  • Incentive Effect of High Crude Oil Price
  • 3.1.3 Reliability
  • 3.1.4 Example of Recycling Loop Effects on Performances
  • 3.1.5 Legislation, Standards, and Related Publications
  • 3.1.5.1 EU Waste Legislation Examples
  • 3.1.5.2 Automotive
  • Schedule
  • 3.1.5.3 Packaging
  • 3.1.5.4 Electrical and Electronic Equipment
  • 3.2 Recycling Methods
  • 3.2.1 Reprocessing of Processing Scraps and Mechanical Recycling
  • 3.2.1.1 Effect of Pollutants
  • 3.2.2 Recycled Material Upgrading
  • 3.2.2.1 The Upgrading by Additives
  • Compatibilizers
  • Impact Modifiers
  • Plasticization
  • Additives for Aging Protection
  • Sensorial Property Enhancers
  • Special Additives and Packages for Recyclate Upgrading
  • 3.2.2.2 The Purity Enhancement
  • 3.2.3 Chemical Recycling
  • 3.2.3.1 Thermoplastic Polyesters
  • 3.2.3.2 Polyurethanes
  • 3.2.4 Solvent Recycling
  • 3.2.4.1 Pretreatment
  • 3.2.4.2 Selective Dissolution
  • 3.2.4.3 Separation
  • 3.2.5 Thermal Recycling
  • 3.2.6 Energy Recovery
  • 3.2.7 Anaerobic Biodegradation of Biodegradable Plastics With Gas Recovery
  • 3.2.8 Enzymatic Depolymerization of Polylactic Acid
  • 3.2.9 The REnescience Process Recovering Plastics and Metals From Municipal Solid Waste Without Sorting
  • 3.3 Sectorial Routes for Recycling
  • 3.3.1 Used Polyethylene Terephthalate Bottles: Realities of Everyday Life
  • 3.3.1.1 Collection of Bottles
  • 3.3.1.2 Sorting of Plastics Bottles
  • 3.3.1.3 Bottle Recycling
  • 3.3.1.4 Bottle-to-Bottle Recycling
  • 3.3.1.5 Bottle to Engineering Thermoplastic Polyester Grades
  • 3.3.2 High-Density Polyethylene Bottles
  • 3.3.3 Electricity and Electronics-to-Electricity and Electronics Recycling: FR Applications
  • 3.3.4 Auto-to-Auto Recycling
  • 3.3.4.1 Wastes of Air Intake Manifolds
  • 3.3.4.2 Waste Polypropylene Parts Recycled in Thermoplastic Elastomer.
  • 3.3.5 Recycling and Reprocessing of Building Products
  • 3.4 CO2 Emission, Greenhouse Effect, and Carbon Footprint
  • 3.4.1 Some Real Facts and Figures
  • 3.4.2 Statistical Analysis of Some Real Examples
  • 3.5 Recyclate Property Examples
  • 3.5.1 Polyamides Examples
  • 3.5.1.1 Industrially Recycled Polyamide
  • 3.5.2 Polystyrene and ABS Examples
  • 3.5.3 Polypropylene Examples
  • 3.5.4 Examples of Polycarbonate, PC/ABS, and PC/PBT Alloys
  • 3.5.5 Examples of Polyetherimide
  • 3.6 Recycled Materials Often Bring Also Cost and Pollution Savings
  • 3.7 Some Limitations to Recycled Material Use
  • 3.7.1 UL's Recommendations on the Use of Regrind
  • 3.7.2 Producer Recommendations
  • Further Reading
  • Websites
  • 4 - Renewable Plastics Derived From Natural Polymers
  • 4.1 Brief Inventory of Renewable Polymers
  • 4.2 Ready-to-Use Thermoplastic Blends and Derivatives of Starch
  • 4.2.1 Mater-Bi® by Novamont (http://www.novamont.com/default.asp?id=1815)
  • 4.2.2 Bioplast by Biotec (http://www.biotec.de/prod/)
  • 4.2.3 Solanyl, Optimum FlourPlast, and Optimum Optinyl by Rodenburg and Solanyl Bioplastics
  • 4.2.4 BIOPAR® by BIOP Biopolymer Technologies AG
  • 4.2.5 Plantic by Plantic (http://www.plantic.com.au/)
  • 4.2.6 Cornpole by Japan Corn Starch (http://www.nihon-cornstarch.com/product/bio_plastic/tabid/160/Default.aspx)
  • 4.2.7 Wuhan Huali Environment Protection-PSM (http://www.psm.com.cn/eng/index.asp)
  • 4.2.7.1 PSM Biodegradable Materials: HL-300 Series
  • 4.2.8 GAÏALENE® by Roquette (http://www.gaialene.com/)
  • 4.2.9 Biolice by Limagrain (http://www.biolice.com/english/index_e.html)
  • 4.3 Polylactic Acid
  • 4.3.1 Properties of PLA Compounds
  • 4.3.2 Formulation
  • 4.3.2.1 Special Additives for In-house Compounding
  • Melt Strength Enhancers
  • Stabilizers
  • Impact Modifiers, Tougheners
  • Plasticizers
  • Reinforcing Additives
  • FR additives.
  • Colorants, Matte Finish
  • Nucleating Agents, Clarifiers
  • Antiblock, Slip, and Release Aids
  • Antifog Additives
  • Antistatic Agent
  • Barrier Property Enhancement
  • Composites
  • 4.3.3 Alloys Extend the Application Field of Bioplastics (See Also Chapter 6)
  • 4.4 Cellulose Derivatives
  • 4.4.1 Cellulose Esters
  • 4.4.1.1 Advantages
  • 4.4.1.2 Drawbacks
  • 4.4.1.3 Special Grades
  • 4.4.1.4 Costs
  • 4.4.1.5 Processing
  • 4.4.1.6 Applications
  • 4.4.1.7 Thermal Behavior
  • 4.4.1.8 Optical Properties
  • 4.4.1.9 Mechanical Properties
  • 4.4.1.10 Dimensional Stability
  • 4.4.1.11 Poisson's Ratio
  • 4.4.1.12 Weathering
  • 4.4.1.13 Chemicals
  • 4.4.1.14 Permeability
  • 4.4.1.15 Fire Resistance
  • 4.4.1.16 Electrical Properties
  • 4.4.1.17 Joining, Decoration
  • 4.4.1.18 Specific ISO Standards Concerning Cellulosics
  • 4.4.1.19 Specific ASTM Standard Examples
  • 4.4.1.20 Trade Name Examples
  • 4.4.1.21 Property Tables
  • 4.4.2 Proprietary Grades of Ready-to-Use Cellulose-Based Plastics
  • 4.5 Various Aliphatic Polyesters
  • 4.5.1 Example of Mirel by Metabolix
  • 4.5.2 Examples of Polyhydroxybutyrate and Polyhydroxybutyrate-Valerate Derivatives
  • 4.5.3 Examples of Polyhydroxybutyrate-Hexanoate
  • 4.5.4 Example of Poly(4-Hydroxybutyric Acid)
  • 4.5.5 Example of Minerv Polyhydroxyalkanoate by BIO-ON
  • 4.6 Liquid Wood Based on Lignin-Arboform by Tecnaro
  • 4.7 Self-Reinforced Composite Produced From Cereals: VEGEMAT® by Vegeplast
  • Further Reading
  • Websites
  • 5 - Biobricks: The Breakthrough of Drop-In Solutions
  • 5.1 A Broad Panel of Biomonomers and Bioblocks "Similar" to Fossil Molecules
  • 5.1.1 Hydrocarbons
  • 5.1.2 Alcohol Routes
  • 5.1.3 Acid Routes
  • 5.1.4 Miscellaneous Routes
  • 5.2 Brief Inventory of Renewable Polymers
  • 5.3 Polyethylene
  • 5.3.1 Renewable Polyethylene
  • 5.3.2 Reminder of Fossil-Sourced Polyethylene General Properties.
  • General Properties.