Indoor navigation strategies for aerial autonomous systems

Indoor Navigation Strategies for Aerial Autonomous Systems presents the necessary and sufficient theoretical basis for those interested in working in unmanned aerial vehicles, providing three different approaches to mathematically represent the dynamics of an aerial vehicle. The book contains detail...

Descripción completa

Detalles Bibliográficos
Otros Autores: Castillo-Garcia, Pedro, author (author), Hernandez, Laura Elena Munoz, author, Gil, Pedro Garcia, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Amsterdam, [Netherlands] : Butterworth-Heinemann 2017.
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630170806719
Tabla de Contenidos:
  • Front Cover
  • Indoor Navigation Strategies for Aerial Autonomous Systems
  • Copyright
  • Contents
  • About the Authors
  • Preface
  • Acknowledgments
  • Part 1 Background
  • 1 State-of-the-Art
  • 1.1 Mathematical Representation of the Vehicle Dynamics
  • 1.2 Attitude Estimation Using Inertial Sensors
  • 1.3 Delay Systems &amp
  • Predictors
  • 1.4 Data Fusion for UAV Localization
  • 1.5 Control &amp
  • Navigation Algorithms
  • 1.6 Trajectory Generation &amp
  • Tracking
  • 1.7 Obstacle Avoidance
  • 1.8 Teleoperation
  • References
  • 2 Modeling Approaches
  • 2.1 Force and Moment in a Rotor
  • 2.2 Euler-Lagrange Approach
  • 2.3 Newton-Euler Approach
  • 2.4 Quaternion Approach
  • 2.5 Discussion
  • References
  • Part 2 Improving Sensor Signals for Control Purposes
  • 3 Inertial Sensors Data Fusion for Orientation Estimation
  • 3.1 Attitude Representation
  • 3.2 Sensor Characterization
  • 3.3 Attitude Estimation Algorithms
  • 3.4 A Computationally-Efficient Kalman Filter
  • 3.5 Discussion
  • References
  • 4 Delay Signals &amp
  • Predictors
  • 4.1 Observer-Predictor Algorithm for Compensation of Measurement Delays
  • 4.2 State Predictor-Control Scheme
  • 4.3 Discussion
  • References
  • 5 Data Fusion for UAV Localization
  • 5.1 Sensor Data Fusion
  • 5.2 Prototype and Numerical Implementation
  • 5.3 Flight Tests and Experimental Results
  • 5.4 OptiTrack Measurements vs EKF Estimation
  • 5.5 Rotational Optical Flow Compensation
  • 5.6 Discussion
  • References
  • Part 3 Navigation Schemes &amp
  • Control Strategies
  • 6 Nonlinear Control Algorithms with Integral Action
  • 6.1 From PD to PID Controllers
  • 6.2 Saturated Controllers with Integral Component
  • 6.3 Integral and Adaptive Backstepping Control - IAB
  • 6.4 Discussion
  • References
  • 7 Sliding Mode Control
  • 7.1 From the Nonlinear Attitude Representation to Linear MIMO Expression.
  • 7.2 Nonlinear Optimal Controller with Integral Sliding Mode Design
  • 7.3 Numerical Validation
  • 7.4 Real-Time Validation
  • 7.5 Discussion
  • References
  • 8 Robust Simple Controllers
  • 8.1 Nonlinear Robust Algorithms Based on Saturation Functions
  • 8.2 Robust Control Based on an Uncertainty Estimator
  • 8.3 Discussion
  • References
  • 9 Trajectory Generation, Planning &amp
  • Tracking
  • 9.1 Quadrotor Mathematical Description
  • 9.2 Time-Optimal Trajectory Generation
  • 9.3 UAV Routing Problem for Inspection-Like Missions
  • 9.4 Trajectory Tracking Problem
  • 9.5 Simulation Results
  • 9.6 Discussion
  • References
  • 10 Obstacle Avoidance
  • 10.1 Artificial Potential Field Method
  • 10.2 Obstacle Avoidance Algorithm
  • 10.3 Limit-Cycle Obstacle Avoidance
  • 10.4 Discussion
  • References
  • 11 Haptic Teleoperation
  • 11.1 Experimental Setup
  • 11.2 Collision Avoidance
  • 11.3 Haptic Teleoperation
  • 11.4 Real-Time Experiments
  • 11.5 Discussion
  • References
  • Index
  • Back Cover.