Advanced numerical and semi-analytical methods for differential equations
Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers si...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
Wiley
2019.
|
Edición: | 1st edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630163006719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Acknowledgments
- Preface
- Chapter 1 Basic Numerical Methods
- 1.1 Introduction
- 1.2 Ordinary Differential Equation
- 1.3 Euler Method
- 1.4 Improved Euler Method
- 1.5 Runge-Kutta Methods
- 1.5.1 Midpoint Method
- 1.5.2 Runge-Kutta Fourth Order
- 1.6 Multistep Methods
- 1.6.1 Adams-Bashforth Method
- 1.6.2 Adams-Moulton Method
- 1.7 Higher‐Order ODE
- References
- Chapter 2 Integral Transforms
- 2.1 Introduction
- 2.2 Laplace Transform
- 2.2.1 Solution of Differential Equations Using Laplace Transforms
- 2.3 Fourier Transform
- 2.3.1 Solution of Partial Differential Equations Using Fourier Transforms
- References
- Chapter 3 Weighted Residual Methods
- 3.1 Introduction
- 3.2 Collocation Method
- 3.3 Subdomain Method
- 3.4 Least‐square Method
- 3.5 Galerkin Method
- 3.6 Comparison of WRMs
- References
- Chapter 4 Boundary Characteristics Orthogonal Polynomials
- 4.1 Introduction
- 4.2 Gram-Schmidt Orthogonalization Process
- 4.3 Generation of BCOPs
- 4.4 Galerkin's Method with BCOPs
- 4.5 Rayleigh-Ritz Method with BCOPs
- References
- Chapter 5 Finite Difference Method
- 5.1 Introduction
- 5.2 Finite Difference Schemes
- 5.2.1 Finite Difference Schemes for Ordinary Differential Equations
- 5.2.1.1 Forward Difference Scheme
- 5.2.1.2 Backward Difference Scheme
- 5.2.1.3 Central Difference Scheme
- 5.2.2 Finite Difference Schemes for Partial Differential Equations
- 5.3 Explicit and Implicit Finite Difference Schemes
- 5.3.1 Explicit Finite Difference Method
- 5.3.2 Implicit Finite Difference Method
- References
- Chapter 6 Finite Element Method
- 6.1 Introduction
- 6.2 Finite Element Procedure
- 6.3 Galerkin Finite Element Method
- 6.3.1 Ordinary Differential Equation
- 6.3.2 Partial Differential Equation
- 6.4 Structural Analysis Using FEM.
- 6.4.1 Static Analysis
- 6.4.2 Dynamic Analysis
- References
- Chapter 7 Finite Volume Method
- 7.1 Introduction
- 7.2 Discretization Techniques of FVM
- 7.3 General Form of Finite Volume Method
- 7.3.1 Solution Process Algorithm
- 7.4 One‐Dimensional Convection-Diffusion Problem
- 7.4.1 Grid Generation
- 7.4.2 Solution Procedure of Convection-Diffusion Problem
- References
- Chapter 8 Boundary Element Method
- 8.1 Introduction
- 8.2 Boundary Representation and Background Theory of BEM
- 8.2.1 Linear Differential Operator
- 8.2.2 The Fundamental Solution
- 8.2.2.1 Heaviside Function
- 8.2.2.2 Dirac Delta Function
- 8.2.2.3 Finding the Fundamental Solution
- 8.2.3 Green's Function
- 8.2.3.1 Green's Integral Formula
- 8.3 Derivation of the Boundary Element Method
- 8.3.1 BEM Algorithm
- References
- Chapter 9 Akbari-Ganji's Method
- 9.1 Introduction
- 9.2 Nonlinear Ordinary Differential Equations
- 9.2.1 Preliminaries
- 9.2.2 AGM Approach
- 9.3 Numerical Examples
- 9.3.1 Unforced Nonlinear Differential Equations
- 9.3.2 Forced Nonlinear Differential Equation
- References
- Chapter 10 Exp‐Function Method
- 10.1 Introduction
- 10.2 Basics of Exp‐Function Method
- 10.3 Numerical Examples
- References
- Chapter 11 Adomian Decomposition Method
- 11.1 Introduction
- 11.2 ADM for ODEs
- 11.3 Solving System of ODEs by ADM
- 11.4 ADM for Solving Partial Differential Equations
- 11.5 ADM for System of PDEs
- References
- Chapter 12 Homotopy Perturbation Method
- 12.1 Introduction
- 12.2 Basic Idea of HPM
- 12.3 Numerical Examples
- References
- Chapter 13 Variational Iteration Method
- 13.1 Introduction
- 13.2 VIM Procedure
- 13.3 Numerical Examples
- References
- Chapter 14 Homotopy Analysis Method
- 14.1 Introduction
- 14.2 HAM Procedure
- 14.3 Numerical Examples
- References.
- Chapter 15 Differential Quadrature Method
- 15.1 Introduction
- 15.2 DQM Procedure
- 15.3 Numerical Examples
- References
- Chapter 16 Wavelet Method
- 16.1 Introduction
- 16.2 Haar Wavelet
- 16.3 Wavelet-Collocation Method
- References
- Chapter 17 Hybrid Methods
- 17.1 Introduction
- 17.2 Homotopy Perturbation Transform Method
- 17.3 Laplace Adomian Decomposition Method
- References
- Chapter 18 Preliminaries of Fractal Differential Equations
- 18.1 Introduction to Fractal
- 18.1.1 Triadic Koch Curve
- 18.1.2 Sierpinski Gasket
- 18.2 Fractal Differential Equations
- 18.2.1 Heat Equation
- 18.2.2 Wave Equation
- References
- Chapter 19 Differential Equations with Interval Uncertainty
- 19.1 Introduction
- 19.2 Interval Differential Equations
- 19.2.1 Interval Arithmetic
- 19.3 Generalized Hukuhara Differentiability of IDEs
- 19.3.1 Modeling IDEs by Hukuhara Differentiability
- 19.3.1.1 Solving by Integral Form
- 19.3.1.2 Solving by Differential Form
- 19.4 Analytical Methods for IDEs
- 19.4.1 General form of nth‐order IDEs
- 19.4.2 Method Based on Addition and Subtraction of Intervals
- References
- Chapter 20 Differential Equations with Fuzzy Uncertainty
- 20.1 Introduction
- 20.2 Solving Fuzzy Linear System of Differential Equations
- 20.2.1 α‐Cut of TFN
- 20.2.2 Fuzzy Linear System of Differential Equations (FLSDEs)
- 20.2.3 Solution Procedure for FLSDE
- References
- Chapter 21 Interval Finite Element Method
- 21.1 Introduction
- 21.1.1 Preliminaries
- 21.1.1.1 Proper and Improper Interval
- 21.1.1.2 Interval System of Linear Equations
- 21.1.1.3 Generalized Interval Eigenvalue Problem
- 21.2 Interval Galerkin FEM
- 21.3 Structural Analysis Using IFEM
- 21.3.1 Static Analysis
- 21.3.2 Dynamic Analysis
- References
- Index
- EULA.