Advanced numerical and semi-analytical methods for differential equations

Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers si...

Descripción completa

Detalles Bibliográficos
Otros Autores: Chakraverty, Snehashish, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley 2019.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630163006719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Acknowledgments
  • Preface
  • Chapter 1 Basic Numerical Methods
  • 1.1 Introduction
  • 1.2 Ordinary Differential Equation
  • 1.3 Euler Method
  • 1.4 Improved Euler Method
  • 1.5 Runge-Kutta Methods
  • 1.5.1 Midpoint Method
  • 1.5.2 Runge-Kutta Fourth Order
  • 1.6 Multistep Methods
  • 1.6.1 Adams-Bashforth Method
  • 1.6.2 Adams-Moulton Method
  • 1.7 Higher‐Order ODE
  • References
  • Chapter 2 Integral Transforms
  • 2.1 Introduction
  • 2.2 Laplace Transform
  • 2.2.1 Solution of Differential Equations Using Laplace Transforms
  • 2.3 Fourier Transform
  • 2.3.1 Solution of Partial Differential Equations Using Fourier Transforms
  • References
  • Chapter 3 Weighted Residual Methods
  • 3.1 Introduction
  • 3.2 Collocation Method
  • 3.3 Subdomain Method
  • 3.4 Least‐square Method
  • 3.5 Galerkin Method
  • 3.6 Comparison of WRMs
  • References
  • Chapter 4 Boundary Characteristics Orthogonal Polynomials
  • 4.1 Introduction
  • 4.2 Gram-Schmidt Orthogonalization Process
  • 4.3 Generation of BCOPs
  • 4.4 Galerkin's Method with BCOPs
  • 4.5 Rayleigh-Ritz Method with BCOPs
  • References
  • Chapter 5 Finite Difference Method
  • 5.1 Introduction
  • 5.2 Finite Difference Schemes
  • 5.2.1 Finite Difference Schemes for Ordinary Differential Equations
  • 5.2.1.1 Forward Difference Scheme
  • 5.2.1.2 Backward Difference Scheme
  • 5.2.1.3 Central Difference Scheme
  • 5.2.2 Finite Difference Schemes for Partial Differential Equations
  • 5.3 Explicit and Implicit Finite Difference Schemes
  • 5.3.1 Explicit Finite Difference Method
  • 5.3.2 Implicit Finite Difference Method
  • References
  • Chapter 6 Finite Element Method
  • 6.1 Introduction
  • 6.2 Finite Element Procedure
  • 6.3 Galerkin Finite Element Method
  • 6.3.1 Ordinary Differential Equation
  • 6.3.2 Partial Differential Equation
  • 6.4 Structural Analysis Using FEM.
  • 6.4.1 Static Analysis
  • 6.4.2 Dynamic Analysis
  • References
  • Chapter 7 Finite Volume Method
  • 7.1 Introduction
  • 7.2 Discretization Techniques of FVM
  • 7.3 General Form of Finite Volume Method
  • 7.3.1 Solution Process Algorithm
  • 7.4 One‐Dimensional Convection-Diffusion Problem
  • 7.4.1 Grid Generation
  • 7.4.2 Solution Procedure of Convection-Diffusion Problem
  • References
  • Chapter 8 Boundary Element Method
  • 8.1 Introduction
  • 8.2 Boundary Representation and Background Theory of BEM
  • 8.2.1 Linear Differential Operator
  • 8.2.2 The Fundamental Solution
  • 8.2.2.1 Heaviside Function
  • 8.2.2.2 Dirac Delta Function
  • 8.2.2.3 Finding the Fundamental Solution
  • 8.2.3 Green's Function
  • 8.2.3.1 Green's Integral Formula
  • 8.3 Derivation of the Boundary Element Method
  • 8.3.1 BEM Algorithm
  • References
  • Chapter 9 Akbari-Ganji's Method
  • 9.1 Introduction
  • 9.2 Nonlinear Ordinary Differential Equations
  • 9.2.1 Preliminaries
  • 9.2.2 AGM Approach
  • 9.3 Numerical Examples
  • 9.3.1 Unforced Nonlinear Differential Equations
  • 9.3.2 Forced Nonlinear Differential Equation
  • References
  • Chapter 10 Exp‐Function Method
  • 10.1 Introduction
  • 10.2 Basics of Exp‐Function Method
  • 10.3 Numerical Examples
  • References
  • Chapter 11 Adomian Decomposition Method
  • 11.1 Introduction
  • 11.2 ADM for ODEs
  • 11.3 Solving System of ODEs by ADM
  • 11.4 ADM for Solving Partial Differential Equations
  • 11.5 ADM for System of PDEs
  • References
  • Chapter 12 Homotopy Perturbation Method
  • 12.1 Introduction
  • 12.2 Basic Idea of HPM
  • 12.3 Numerical Examples
  • References
  • Chapter 13 Variational Iteration Method
  • 13.1 Introduction
  • 13.2 VIM Procedure
  • 13.3 Numerical Examples
  • References
  • Chapter 14 Homotopy Analysis Method
  • 14.1 Introduction
  • 14.2 HAM Procedure
  • 14.3 Numerical Examples
  • References.
  • Chapter 15 Differential Quadrature Method
  • 15.1 Introduction
  • 15.2 DQM Procedure
  • 15.3 Numerical Examples
  • References
  • Chapter 16 Wavelet Method
  • 16.1 Introduction
  • 16.2 Haar Wavelet
  • 16.3 Wavelet-Collocation Method
  • References
  • Chapter 17 Hybrid Methods
  • 17.1 Introduction
  • 17.2 Homotopy Perturbation Transform Method
  • 17.3 Laplace Adomian Decomposition Method
  • References
  • Chapter 18 Preliminaries of Fractal Differential Equations
  • 18.1 Introduction to Fractal
  • 18.1.1 Triadic Koch Curve
  • 18.1.2 Sierpinski Gasket
  • 18.2 Fractal Differential Equations
  • 18.2.1 Heat Equation
  • 18.2.2 Wave Equation
  • References
  • Chapter 19 Differential Equations with Interval Uncertainty
  • 19.1 Introduction
  • 19.2 Interval Differential Equations
  • 19.2.1 Interval Arithmetic
  • 19.3 Generalized Hukuhara Differentiability of IDEs
  • 19.3.1 Modeling IDEs by Hukuhara Differentiability
  • 19.3.1.1 Solving by Integral Form
  • 19.3.1.2 Solving by Differential Form
  • 19.4 Analytical Methods for IDEs
  • 19.4.1 General form of nth‐order IDEs
  • 19.4.2 Method Based on Addition and Subtraction of Intervals
  • References
  • Chapter 20 Differential Equations with Fuzzy Uncertainty
  • 20.1 Introduction
  • 20.2 Solving Fuzzy Linear System of Differential Equations
  • 20.2.1 α‐Cut of TFN
  • 20.2.2 Fuzzy Linear System of Differential Equations (FLSDEs)
  • 20.2.3 Solution Procedure for FLSDE
  • References
  • Chapter 21 Interval Finite Element Method
  • 21.1 Introduction
  • 21.1.1 Preliminaries
  • 21.1.1.1 Proper and Improper Interval
  • 21.1.1.2 Interval System of Linear Equations
  • 21.1.1.3 Generalized Interval Eigenvalue Problem
  • 21.2 Interval Galerkin FEM
  • 21.3 Structural Analysis Using IFEM
  • 21.3.1 Static Analysis
  • 21.3.2 Dynamic Analysis
  • References
  • Index
  • EULA.