Advances in applied mechanics Volume 49 Volume 49 /
Advances in Applied Mechanics draws together recent, significant advances in various topics in applied mechanics. Published since 1948, the book aims to provide authoritative review articles on topics in the mechanical sciences. While the book is ideal for scientists and engineers working in various...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Cambridge, Massachusetts :
Academic Press
2016.
|
Edición: | First edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630142506719 |
Tabla de Contenidos:
- Front Cover
- Advances in Applied Mechanics
- Copyright
- Contents
- Contributors
- Chapter One: Internal Length Gradient (ILG) Material Mechanics Across Scales and Disciplines
- 1. Introduction
- 1.1. Background and Motivation
- 1.2. Key Concepts and Techniques
- 1.3. Relevance to Emerging Science/Technology/Biomedicine Research Areas
- 1.3.1. Structural NC/UFG/BMG and Micro-/Nanoheterogeneous Materials
- 1.3.2. High-Energy Density Storage and Optoelectronic Materials
- 1.3.3. Brain Mechanics and Neuroelasticity
- 2. Methodology and Proposed ILG Platform
- 2.1. Generic Theoretical Modeling and Numerical Issues
- 2.2. Generic Experimental Issues and Model Validation
- 3. Emerging Research Case-Study Areas
- 3.1. Structural Materials: NCs/UFGs and BMGs
- 3.2. Energetic Materials: LiBs/NaBs, MEMs/NEMs, and LEDS
- 3.2.1. Gradient Chemomechanics and LiBs/NaBs
- 3.2.2. Gradient Electromechanics: MEMS/NEMS and Interconnects
- 3.2.3. Gradient Photomechanics and LEDs
- 3.3. Brain ILG Mechanics and Neuroelasticity
- 4. Benchmark Problems
- 4.1. Gradient Chemoelasticity: Size-Dependent Damage and Phase Separation in LiBs
- 4.1.1. LiB Anodes and Size-Dependent Chemomechanical Damage
- 4.1.2. LiB Cathodes and Size-Dependent Phase Transformations
- 4.2. Gradient Electroelasticity and Size Effects
- 4.2.1. Gradient Piezoelectric Perforated Plate Under Shear
- 4.2.2. Gradient Piezoelectric Beam with Flexoelectric and Surface Effects
- 4.3. Gradient Elastic Fracture Mechanics
- 4.3.1. GradEla Nonsingular Crack Fields
- 4.3.2. Dislocation-Based Gradient Elastic Fracture Mechanics
- 4.4. Gradient Plasticity and Shear Instabilities: Size-Dependent Stability Diagrams
- 4.4.1. Shear Bands in BMGs for Infinite Domains
- 4.4.2. Finite Domains and Size Effects.
- 4.5. Combined Gradient-Stochastic Models and Size Effects in Micro-/Nanopillars
- 4.5.1. Stochasticity-Enhanced Gradient Plasticity Model
- 4.5.2. Analysis of Heterogeneity and Size Dependence Through Tsallis q-Statistics
- 4.6. Further Considerations on Tsallis q-Statistics
- 4.6.1. Tsallis q-Statistics for Serrations
- 4.6.2. Image Analysis of Multiple Shear Bands
- 4.7. Fractional Calculus and Fractal Media
- 4.7.1. Fractional Gradient Elasticity and Fractal Elasticity
- 4.7.2. Fractional Gradient Plasticity and Fractal Plasticity
- 5. Concluding Remarks
- 5.1. Generalized Continuum Mechanics Aspects
- 5.2. Extensions Beyond Nanotechnology
- 5.3. Extensions to Biomedicine
- Acknowledgments
- References
- Chapter Two: Scaling to RVE in Random Media
- 1. Micro-, Meso-, and Macroscales
- 1.1. Random Microstructure and RVE
- 1.2. RVE via Hill-Mandel Condition
- 1.3. Hierarchy of Mesoscale Bounds
- 2. Spatial Randomness
- 2.1. Tensor Random Fields in Stochastic Mechanics
- 2.2. Ergodicity in Mean and in Covariance
- 2.3. Stochastic Boundary Value Problems
- 3. Antiplane Elasticity = In-Plane Conductivity
- 3.1. Hierarchies of Mesoscale Bounds
- 3.2. Scaling Function
- 3.3. Gaussian Correlated Microstructures
- 4. Elastic Microstructures
- 4.1. Scaling Function
- 4.2. Scale Dependence via Beta Distribution
- 4.3. Examples of Hierarchies of Mesoscale Bounds
- 4.3.1. Random Chessboards and Bernoulli Lattices
- 4.3.2. Universal Properties of Mesoscale Bounds
- 4.3.3. Random Hyperbolic Thermoelastic Solids
- 4.3.4. Moduli of Trabecular Bone
- 5. Inelastic Microstructures
- 5.1. Physically Nonlinear Elastic Microstructures
- 5.1.1. Hierarchies of Mesoscale Bounds
- 5.1.2. Power-Law Materials
- 5.1.3. Random Formation vis-à-vis Inelastic Response of Paper
- 5.2. Elastic-Plastic Microstructures.
- 5.2.1. Hierarchies of Mesoscale Bounds
- 5.2.2. Random Matrix-Inclusion Composites and Chessboards
- 5.3. Hierarchies of Yield Surfaces
- 5.4. Scaling in Damage Phenomena
- 6. Viscoelastic Microstructures
- 6.1. Scale-Dependent Homogenization in Time Domain
- 6.2. Scale-Dependent Homogenization in Frequency Domain
- 7. Stokes Flow in Porous Media
- 7.1. Hierarchies of Mesoscale Bounds
- 7.2. Permeability in a Planar Microstructure
- 8. Thermoelastic Microstructures
- 8.1. Finite Elasticity of Random Composites
- 8.2. Constitutive Relations in Linear and Nonlinear Thermoelasticity
- 8.3. Mesoscale Bounds
- 8.3.1. Energy Bounds on Free Energy Functions
- 8.3.2. Thermodynamic Potential for a Linear Thermoelastic Composite
- 8.3.3. Thermodynamic Potential for a Nonlinear Thermoelastic Composite
- 9. Homogenization by a Micropolar Continuum
- 9.1. Background
- 9.2. Mesoscale Bounds
- 10. Waves and Wavefronts in Random Media
- 10.1. Stochastic Spectral Finite Elements
- 10.2. Microscale Heterogeneity vs Wavefront Thickness
- 11. Electromagnetic Properties
- 12. RVE in Presence of Violations of Thermodynamics' Second Law
- 12.1. Background: Fluctuation Theorem
- 12.2. Entropy as a Submartingale
- 12.3. Continuum Mechanics with Violations of Second Law
- 13. Conclusions
- 13.1. Comparison of Scaling Trends
- 13.2. Future Directions and Open Challenges
- Acknowledgments
- References
- Index
- Back Cover.