Heat transfer in aerospace applications
Heat Transfer in Aerospace Applications is the first book to provide an overall description of various heat transfer issues of relevance for aerospace applications. The book contains chapters relating to convection cooling, heat pipes, ablation, heat transfer at high velocity, low pressure and micro...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Amsterdam, [Netherlands] :
Academic Press
2017.
|
Edición: | 1st edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630129006719 |
Tabla de Contenidos:
- Front Cover
- HEAT TRANSFER IN AEROSPACE APPLICATIONS
- HEAT TRANSFER IN AEROSPACE APPLICATIONS
- Copyright
- CONTENTS
- PREFACE
- NOMENCLATURE
- 1 - Introduction
- 1.1 HEAT TRANSFER IN GENERAL
- 1.2 SPECIFICS FOR AEROSPACE HEAT TRANSFER
- 1.2.1 Thermal Management
- 1.2.2 Cryogenic Matters
- 1.2.3 Low-Density Heat Transfer
- 1.2.4 Gravity Effects
- 1.2.5 Heat Pipes
- 1.2.6 Auxiliary Equipment
- 1.2.6.1 Heat Exchangers
- 1.2.6.2 Fuel Cells
- 1.2.7 Miscellaneous Topics and SBLI
- REFERENCES
- 2 - Ablation
- 2.1 INTRODUCTION
- 2.2 AN ILLUSTRATIVE EXAMPLE OF ABLATION
- 2.3 ADDITIONAL INFORMATION
- REFERENCES
- 3 - Aerodynamic Heating: Heat Transfer at High Speeds
- 3.1 INTRODUCTION
- 3.2 HIGH VELOCITY FLOW ALONG A FLAT PLATE
- 3.3 CALCULATION OF THE HEAT TRANSFER
- 3.4 TURBULENT FLOW
- 3.5 INFLUENCE OF THE TEMPERATURE DEPENDENCE OF THE THERMOPHYSICAL PROPERTIES
- 3.6 TEMPERATURE DISTRIBUTION IN THE BOUNDARY LAYER
- 3.7 ILLUSTRATIVE EXAMPLE
- 3.8 AN ENGINEERING EXAMPLE OF A THERMAL PROTECTION SYSTEM
- 3.8.1 Thermal Analysis
- 3.8.2 Finite Element Analysis of Heat Transfer
- 3.8.3 Thermal Results
- 3.9 AERODYNAMIC HEAT REDUCTION
- REFERENCES
- FURTHER READING
- 4 - Low-Density Heat Transfer: Rarefied Gas Heat Transfer
- 4.1 INTRODUCTION
- 4.2 KINETIC THEORY OF GASES
- 4.3 FLOW REGIMES FOR RAREFIED GASES
- 4.4 METHODS OF ANALYSIS
- 4.5 INTERACTION BETWEEN GAS AND SURFACE
- 4.6 HEAT TRANSFER AT HIGH VELOCITIES
- 4.7 SLIP FLOW REGIME
- 4.7.1 Heat Conduction in Rarefied Gases
- 4.7.1.1 Parallel Plates
- 4.7.2 Example: Cylinder in Crossflow
- 4.7.3 Sphere
- 4.7.4 Flat Plate: Tangential Flow
- 4.8 TRANSITION REGIME
- 4.9 FREE MOLECULAR FLOW REGIME: THE KNUDSEN FLOW
- 4.10 EXAMPLE: LOW-DENSITY HEAT TRANSFER
- 4.11 EXAMPLE: HEAT TRANSFER IN AN EVACUATED SPACE
- 4.12 MICROCHANNEL APPLICATIONS.
- 4.12.1 The Direct Simulation Monte Carlo Method
- REFERENCES
- 5 - Cryogenics
- 5.1 INTRODUCTION
- 5.2 KAPITZA RESISTANCE
- 5.2.1 Kapitza Number
- 5.3 CRYOGENIC TANKS
- 5.4 ANALYSIS OF PRESSURIZATION AND THERMAL STRATIFICATION IN AN LH2 TANK
- 5.4.1 Mathematical Model
- 5.4.2 Thermal Environment
- 5.4.3 Numerical Solution Procedure
- 5.4.4 Results
- 5.5 CRYOGENIC HEAT TRANSFER CHARACTERISTICS
- 5.6 HYDROGEN IN AEROSPACE APPLICATIONS
- REFERENCES
- 6 - Aerospace Heat Exchangers
- 6.1 INTRODUCTION
- 6.2 APPLICATIONS OF AEROSPACE HEAT EXCHANGERS
- 6.2.1 Gas Turbine Cycles
- 6.2.2 Environmental Control System
- 6.2.3 Thermal Management
- 6.3 GENERAL DESIGN CONSIDERATIONS FOR AEROSPACE HEAT EXCHANGERS
- 6.4 PLATE-FIN HEAT EXCHANGERS
- 6.5 PRINTED CIRCUIT HEAT EXCHANGERS
- 6.6 MICRO HEAT EXCHANGERS
- 6.7 OTHER AEROSPACE HEAT EXCHANGERS
- 6.7.1 Primary Surface Heat Exchangers
- 6.7.2 Heat Pipe Heat Exchanger
- 6.7.3 Heat Exchangers Using New Materials
- 6.7.3.1 Foam Materials
- 6.7.3.2 Ceramic Materials
- 6.8 SUMMARY
- REFERENCES
- 7 - Heat Pipes for Aerospace Application
- 7.1 INTRODUCTION
- 7.2 GENERAL DESCRIPTION OF HEAT PIPES
- 7.3 CAPILLARY LIMITATION
- 7.3.1 Capillary Pressure
- 7.3.2 Normal Hydrostatic Pressure Drop
- 7.3.3 Axial Hydrostatic Pressure Drop
- 7.3.4 Liquid Pressure Drop
- 7.3.5 Vapor Pressure Drop
- 7.4 OTHER LIMITATIONS
- 7.4.1 Viscous Limitation
- 7.4.2 Sonic Limitation
- 7.4.3 Entrainment Limitation
- 7.4.4 Boiling Limitation
- 7.5 DESIGN AND MANUFACTURING CONSIDERATIONS FOR HEAT PIPES
- 7.5.1 Selection of Working Fluid
- 7.5.2 Importance of the Wicking Structures
- 7.5.3 Compatibility of Materials
- 7.5.4 Sizes and Shapes of Heat Pipes
- 7.5.5 Reliability and Lifetime Tests
- 7.6 VARIOUS TYPES OF HEAT PIPES
- 7.6.1 Heat Pipes with Variable Conductance
- 7.6.2 Rotating Heat Pipes.
- 7.6.3 Cryogenic Heat Pipes
- 7.6.4 Vapor Chamber
- 7.6.5 Loop Heat Pipes
- 7.6.6 Micro Heat Pipes
- 7.6.7 Nanofluids in Heat Pipe Applications
- 7.7 CONCLUDING REMARKS AND SUMMARY
- REFERENCES
- 8 - Fuel Cells
- 8.1 INTRODUCTION
- 8.2 TYPES OF FUEL CELLS
- 8.2.1 Proton Exchange Membrane Fuel Cells or Polymer Electrolyte Fuel Cells (PEFCs)
- 8.2.2 Alkaline Fuel Cells
- 8.2.3 Phosphoric Acid Fuel Cells (PAFCs)
- 8.2.4 Solid Oxide Fuel Cells
- 8.2.5 Molten Carbonate Fuel Cells (MCFCs)
- 8.2.6 Direct Methanol Fuel Cells (DMFCs)
- 8.2.7 Reversible Fuel Cells
- 8.2.8 Proton Ceramic Fuel Cells
- 8.3 BASIC TRANSPORT PROCESSES AND OPERATION OF A FUEL CELL
- 8.3.1 Electrochemical Kinetics
- 8.3.2 Heat and Mass Transfer
- 8.3.3 Charge and Water Transport
- 8.4 AEROSPACE APPLICATIONS
- REFERENCES
- 9 - Microgravity Heat Transfer
- 9.1 INTRODUCTION
- 9.2 SOLIDIFICATION IN MICROGRAVITY
- 9.3 GRAVITY EFFECTS ON SINGLE-PHASE CONVECTION
- 9.4 CONDENSATION UNDER MICROGRAVITY
- 9.5 BOILING/EVAPORATION IN MICROGRAVITY
- 9.6 MICROGRAVITY EFFECTS IN CRYOGENIC TANKS
- 9.6.1 Results
- REFERENCES
- 10 - Computational Methods for the Investigations of Heat Transfer Phenomena in Aerospace Applications
- 10.1 INTRODUCTION
- 10.2 GOVERNING EQUATIONS
- 10.3 NUMERICAL METHODS TO SOLVE THE GOVERNING DIFFERENTIAL EQUATIONS
- 10.3.1 The Finite Volume Method
- 10.3.1.1 Convection-Diffusion Schemes
- 10.3.1.2 Source Term
- 10.3.1.3 Solution of the Discretized Equations
- 10.3.1.4 The Pressure in the Momentum Equations
- 10.3.1.5 Procedures for Solution of the Momentum Equations
- 10.3.1.6 Convergence
- 10.3.1.7 Number of Grid Points and Control Volumes
- 10.3.1.8 Complex Geometries
- 10.4 THE CFD APPROACH
- 10.4.1 Turbulence Models
- 10.4.2 Wall Effects
- 10.4.3 CFD Codes
- 10.5 TOPICS NOT TREATED
- 10.6 EXAMPLES.
- 10.6.1 Chemical Nonequilibrium Turbulent Flow in a Scramjet Nozzle
- 10.6.1.1 Some Results
- 10.6.2 Shock Wave-Boundary Layer Interactions
- 10.7 CONCLUSIONS
- REFERENCES
- 11 - Measuring Techniques
- 11.1 INTRODUCTION
- 11.2 TEMPERATURE MEASUREMENT
- 11.3 FLOW MEASUREMENT
- 11.3.1 Typical Flow Meters
- 11.3.2 Two-Phase Flow Measurements
- 11.3.3 Microscale Fluid Flow Measurement
- 11.4 LIQUID MASS GAUGING IN MICROGRAVITY
- 11.4.1 Review
- 11.4.2 Compression of Mass Gauging
- 11.4.2.1 Description of Ground Experiments
- 11.4.2.1.1 Experimental Apparatus
- 11.4.2.1.2 Experimental Procedures
- 11.4.2.2 Test Results and Discussion
- 11.4.2.2.1 Normal Tests
- 11.4.2.2.2 Attitude Disturbance Tests
- 11.4.2.2.3 Heat Transfer Tests
- 11.4.3 Summary and Concluding Remarks
- REFERENCES
- 1: Governing Equations for Momentum, Mass, and Energy Transport
- A1.1 CONTINUITY EQUATION (MASS CONSERVATION EQUATION)
- A1.2 THE NAVIER-STOKES EQUATIONS
- A1.2.1 The Stress Tensor σij
- A1.2.2 The Navier-Stokes Equations for Two-Dimensional and Incompressible Flows
- A1.2.3 Derivation of the Complete Temperature Field Equation
- A1.2.3.1 Determination of ΔE˙
- A1.2.3.2 Determination of the Heat Transfer Rate Q˙
- A1.2.3.3 Determination of the Work Rate W˙
- A1.2.3.3.1 The Energy Equation in its Primary Form
- A1.2.3.3.2 Rewriting the Energy Equation
- A1.3 THE BOUNDARY LAYER FORM OF THE TEMPERATURE FIELD EQUATION
- A1.4 BOUNDARY LAYER EQUATIONS FOR THE LAMINAR CASE
- A1.5 DIMENSIONLESS GROUPS AND RULES OF SIMILARITY
- REFERENCES
- 2: Dimensionless Numbers of Relevance in Aerospace Heat Transfer
- Index
- A
- B
- C
- D
- E
- F
- G
- H
- I
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- Back Cover.