Green composites natural and waste based composites for a sustainable future

Green Composites: Waste-based Materials for a Sustainable Future, Second Edition presents exciting new developments on waste-based composites. New, additional, or replacement chapters focus on these elements, reflecting on developments over the past ten years. Authors of existing chapters have broug...

Descripción completa

Detalles Bibliográficos
Otros Autores: Baillie, Caroline, author (author), Bailli, Caroline, editor (editor), Jayasinghe, Randika, editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Duxford, England : Woodhead Publishing 2017.
Edición:Second edition
Colección:Woodhead Publishing series in composites science and engineering.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630126506719
Tabla de Contenidos:
  • Front Cover
  • Green Composites
  • Copyright Page
  • Contents
  • List of contributors
  • 1 Green composites: towards a sustainable future?
  • References
  • 2 Designing for composites: traditional and future views
  • 2.1 The advancement of design thinking
  • 2.2 Three principles of development
  • 2.3 An obsolete value system
  • 2.4 The big challenge
  • 2.5 How to think about composite materials
  • 2.6 "High technology is not new"
  • References
  • 3 Cellulose fiber/nanofiber from natural sources including waste-based sources
  • 3.1 Introduction
  • 3.2 The microstructure of plant fibers-kenaf fibers
  • 3.3 The production, structure, and properties of cellulose nanofiber using a grinder
  • 3.4 The production, structure, and properties of cellulose nanofiber using other methods
  • 3.5 The intrinsic mechanical properties of cellulose nanofibers
  • 3.6 Cellulose nanofiber composites
  • 3.7 Future trends
  • References
  • 4 Natural fiber and hybrid fiber thermoplastic composites: advancements in lightweighting applications
  • 4.1 Introduction
  • 4.2 Natural fibers in composite manufacturing
  • 4.2.1 Properties of natural fibers
  • 4.3 Natural fiber reinforced thermoplastics composites
  • 4.3.1 Types of thermoplastic composites
  • 4.3.2 Factors influencing natural fiber reinforced composites
  • 4.3.2.1 Fiber loading and dispersion
  • 4.3.2.2 Fiber length
  • 4.3.2.3 Fiber orientation
  • 4.3.2.4 Fiber-matrix adhesion
  • 4.4 Developments in the processing of natural fiber reinforced composites
  • 4.4.1 Recent developments in short fiber composites processing
  • 4.5 Thermoplastic hybrid composites
  • 4.6 Advanced natural fiber/hybrid fiber composites in lightweighting applications
  • 4.7 Emerging trend: utilization of waste or recycled fibers in composites
  • 4.8 Environmental benefits of using lightweight composites and future trends
  • 4.9 Future trends.
  • Acknowledgments
  • References
  • 5 Recycled synthetic polymer fibers in composites
  • Summary points
  • 5.1 Introduction
  • 5.2 Polymer sourcing, separation, and purification
  • 5.2.1 Poly(ethylene terephthalate)
  • 5.2.2 High-density polyethylene
  • 5.2.3 Polypropylene
  • 5.3 Fiber production
  • 5.3.1 Poly(ethylene terephthalate) fibers
  • 5.3.2 Polypropylene fibers
  • 5.3.3 Cellulose fiber separation and purification
  • 5.4 Composite formation
  • 5.4.1 Polypropylene-cellulose fiber composites
  • 5.4.2 Single-polymer fiber-matrix composites
  • 5.5 Applications
  • 5.6 Future trends
  • 5.7 Conclusion
  • References
  • 6 Clean production
  • 6.1 Introduction
  • 6.1.1 Environmental quality
  • 6.1.2 Social equity
  • 6.1.3 Economic prosperity
  • 6.2 Energy saving in the manufacture and production of composites
  • 6.2.1 Energy tariffs
  • 6.2.2 Materials
  • 6.2.3 Production processes
  • 6.2.3.1 Hydraulics versus electrics in injection molding
  • 6.3 Limiting the environmental impact of processing
  • 6.3.1 Contact molding
  • 6.3.2 Resin infusion under flexible tooling
  • 6.3.3 RIFT summary
  • 6.3.4 Prepregging (autoclaving)
  • 6.3.5 Prepregging/autoclave summary
  • 6.3.6 Double RIFT diaphragm forming
  • 6.3.7 DRDF summary
  • 6.3.8 RTM/RIM
  • 6.3.9 Resin transfer molding
  • 6.3.10 RTM summary
  • 6.3.11 Structural reaction injection molding
  • 6.3.12 RRIM/SRIM summary
  • 6.4 The use of additives
  • 6.4.1 Shrinkage control additives
  • 6.4.2 Plasticizers and lubricants
  • 6.4.3 Colorants
  • 6.4.4 Flame retardants
  • 6.4.5 Fillers
  • 6.4.6 Biocides and antimicrobials
  • 6.5 End-of-life disposal strategies
  • 6.5.1 Automotive waste streams
  • 6.6 Summary
  • 6.7 Future trends
  • 6.7.1 Materials
  • 6.7.1.1 Fibers
  • 6.7.1.2 Matrices
  • 6.7.1.3 Methods
  • 6.7.1.4 Other factors
  • References
  • 7 Green composites for the built environment.
  • 7.1 Introduction to green construction materials
  • 7.1.1 Background
  • 7.1.2 European legislation
  • 7.1.3 Environmental impact and properties of green materials
  • 7.2 Green matrix materials
  • 7.2.1 Lime
  • 7.2.2 Clay
  • 7.3 Green fibers
  • 7.3.1 Hemp shiv
  • 7.3.2 Straw
  • 7.4 Examples of construction with green composites
  • 7.4.1 Modular construction with green composites
  • 7.4.2 Hemp-lime composite structures
  • 7.5 Thermal conductivity of green building insulation materials
  • 7.5.1 Introduction
  • 7.5.2 Aerogel and bio-based composites
  • 7.5.3 Cellulose
  • 7.5.4 Sheep's wool
  • 7.5.5 Hemp-lime
  • 7.6 Vapor sorption and desorption for climate control-moisture-buffering
  • 7.7 Photocatalytic coatings for control of VOCs and greenhouse gases
  • 7.7.1 Photocatalytic coatings
  • 7.7.2 The antibacterial effect of photocatalytic coatings
  • 7.7.3 Commercialization of TiO2
  • 7.8 Social impact of greening the built environment
  • Acknowledgment
  • References
  • Further reading
  • 8 Engineering with people: a participatory needs and feasibility study of a waste-based composite manufacturing project in ...
  • 8.1 Introduction
  • 8.2 Methodology
  • 8.2.1 Theoretical conceptual framework
  • 8.2.2 WFL's commitments
  • 8.2.3 Fieldwork and data collection
  • 8.2.4 Data analysis
  • 8.3 Results
  • 8.3.1 Stakeholder analysis
  • 8.3.1.1 Primary stakeholders
  • 8.3.1.2 Secondary stakeholders
  • 8.3.1.3 Waste generators-households and commercial establishments
  • 8.3.1.4 External stakeholders
  • 8.3.1.5 Possible trajectories
  • 8.3.2 Availability of waste materials
  • 8.3.2.1 Preconsumer waste: textile waste
  • 8.3.2.2 Postconsumer waste: paper and cardboard
  • 8.3.2.3 Other plant-based natural fibers
  • 8.3.3 Sources of funding to support set up costs
  • 8.3.3.1 Internal funding
  • 8.3.3.2 External funding
  • 8.3.4 Appropriate technology.
  • 8.3.4.1 Local technology
  • 8.3.5 Products and markets
  • 8.3.5.1 Potential product ideas
  • 8.3.5.2 Potential markets
  • 8.4 Final thoughts
  • Acknowledgments
  • References
  • 9 Nanotechnology and the Dreamtime knowledge of spinifex grass
  • 9.1 Introduction
  • 9.2 The sacred histories of the Georgina River basin
  • 9.3 The colonial and postcolonial history of the Georgina River
  • 9.4 The botany and ecology of spinifex grass
  • 9.5 Uses of spinifex grasses in the classical Aboriginal tradition
  • 9.6 Colonial acculturation of spinifex cladding
  • 9.7 The biomimetic approach to the project-scoping biomaterials
  • 9.8 The properties of Triodia pungens resin
  • 9.9 Renewable resource-based polymers and biocomposites
  • 9.10 Triodia fibers as reinforcement for biocomposite
  • 9.11 Scientific breakthrough-the investigation of spinifex nanofibers
  • 9.12 The challenge of sustainable harvesting
  • 9.13 The role of the Dugalunji Camp in the project
  • Conclusion
  • References
  • Index
  • Back Cover.