Practical machine learning cookbook resolving and offering solutions to your machine learning problems with R

Building Machine Learning applications with R About This Book Implement a wide range of algorithms and techniques for tackling complex data Improve predictions and recommendations to have better levels of accuracy Optimize performance of your machine-learning systems Who This Book Is For This book i...

Descripción completa

Detalles Bibliográficos
Otros Autores: Tripathi, Atul, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Birmingham, England ; Mumbai, [India] : Packt Publishing 2017.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630121806719
Tabla de Contenidos:
  • Cover
  • Copyright
  • Credits
  • About the Author
  • About the Reviewer
  • www.PacktPub.com
  • Customer Feedback
  • Table of Contents
  • Preface
  • Chapter 1: Introduction to Machine Learning
  • What is machine learning?
  • An overview of classification
  • An overview of clustering
  • An overview of supervised learning
  • An overview of unsupervised learning
  • An overview of reinforcement learning
  • An overview of structured prediction
  • An overview of neural networks
  • An overview of deep learning
  • Chapter 2: Classification
  • Introduction
  • Discriminant function analysis - geological measurements on brines from wells
  • Getting ready
  • Step 1 - collecting and describing data
  • How to do it...
  • Step 2 - exploring data
  • Step 3 - transforming data
  • Step 4 - training the model
  • Step 5 - classifying the data
  • Step 6 - evaluating the model
  • Multinomial logistic regression - understanding program choices made by students
  • Getting ready
  • Step 1 - collecting data
  • How to do it...
  • Step 2 - exploring data
  • Step 3 - training the model
  • Step 4 - testing the results of the model
  • Step 5 - model improvement performance
  • Tobit regression - measuring the students' academic aptitude
  • Getting ready
  • Step 1 - collecting data
  • How to do it...
  • Step 2 - exploring data
  • Step 3 - plotting data
  • Step 4 - exploring relationships
  • Step 5 - training the model
  • Step 6 - testing the model
  • Poisson regression - understanding species present in Galapagos Islands
  • Getting ready
  • Step 1 - collecting and describing the data
  • How to do it...
  • Step 2 - exploring the data
  • Step 3 - plotting data and testing empirical data
  • Step 4 - rectifying discretization of the Poisson model
  • Step 5 - training and evaluating the model using the link function
  • Step 6 - revaluating using the Poisson model.
  • Step 7 - revaluating using the linear model
  • Chapter 3: Clustering
  • Introduction
  • Hierarchical clustering - World Bank sample dataset
  • Getting ready
  • Step 1 - collecting and describing data
  • How to do it...
  • Step 2 - exploring data
  • Step 3 - transforming data
  • Step 4 - training and evaluating the model performance
  • Step 5 - plotting the model
  • Hierarchical clustering - Amazon rainforest burned between 1999-2010
  • Getting ready
  • Step 1 - collecting and describing data
  • How to do it...
  • Step 2 - exploring data
  • Step 3 - transforming data
  • Step 4 - training and evaluating model performance
  • Step 5 - plotting the model
  • Step 6 - improving model performance
  • Hierarchical clustering - gene clustering
  • Getting ready
  • Step 1 - collecting and describing data
  • How to do it...
  • Step 2 - exploring data
  • Step 3 - transforming data
  • Step 4 - training the model
  • Step 5 - plotting the model
  • Binary clustering - math test
  • Getting ready
  • Step 1 - collecting and describing data
  • How to do it...
  • Step 2 - exploring data
  • Step 3 - training and evaluating model performance
  • Step 4 - plotting the model
  • Step 5 - K-medoids clustering
  • K-means clustering - European countries protein consumption
  • Getting ready
  • Step 1 - collecting and describing data
  • How to do it...
  • Step 2 - exploring data
  • Step 3 - clustering
  • Step 4 - improving the model
  • K-means clustering - foodstuff
  • Getting ready
  • Step 1 - collecting and describing data
  • How to do it...
  • Step 2 - exploring data
  • Step 3 - transforming data
  • Step 4 - clustering
  • Step 5 - visualizing the clusters
  • Chapter 4: Model Selection and Regularization
  • Introduction
  • Shrinkage methods - calories burned per day
  • Getting ready
  • Step 1 - collecting and describing data
  • How to do it...
  • Step 2 - exploring data.
  • Step 3 - building the model
  • Step 4 - improving the model
  • Step 5 - comparing the model
  • Dimension reduction methods - Delta's Aircraft Fleet
  • Getting ready
  • Step 1 - collecting and describing data
  • How to do it...
  • Step 2 - exploring data
  • Step 3 - applying principal components analysis
  • Step 4 - scaling the data
  • Step 5 - visualizing in 3D plot
  • Principal component analysis - understanding world cuisine
  • Getting ready
  • Step 1 - collecting and describing data
  • How to do it...
  • Step 2 - exploring data
  • Step 3 - preparing data
  • Step 4 - applying principal components analysis
  • Chapter 5: Nonlinearity
  • Generalized additive models - measuring the household income of New Zealand
  • Getting ready
  • Step 1 - collecting and describing data
  • How to do it...
  • Step 2 - exploring data
  • Step 3 - setting up the data for the model
  • Step 4 - building the model
  • Smoothing splines - understanding cars and speed
  • How to do it...
  • Step 1 - exploring the data
  • Step 2 - creating the model
  • Step 3 - fitting the smooth curve model
  • Step 4 - plotting the results
  • Local regression - understanding drought warnings and impact
  • Getting ready
  • Step 1 - collecting and describing data
  • How to do it...
  • Step 2 - collecting and exploring data
  • Step 3 - calculating the moving average
  • Step 4 - calculating percentiles
  • Step 5 - plotting results
  • Chapter 6: Supervised Learning
  • Introduction
  • Decision tree learning - Advance Health Directive for patients with chest pain
  • Getting ready
  • Step 1 - collecting and describing the data
  • How to do it...
  • Step 2 - exploring the data
  • Step 3 - preparing the data
  • Step 4 - training the model
  • Step 5- improving the model
  • Decision tree learning - income-based distribution of real estate values
  • Getting ready.
  • Step 1 - collecting and describing the data
  • How to do it...
  • Step 2 - exploring the data
  • Step 3 - training the model
  • Step 4 - comparing the predictions
  • Step 5 - improving the model
  • Decision tree learning - predicting the direction of stock movement
  • Getting ready
  • Step 1 - collecting and describing the data
  • How to do it...
  • Step 2 - exploring the data
  • Step 3 - calculating the indicators
  • Step 4 - preparing variables to build datasets
  • Step 5 - building the model
  • Step 6 - improving the model
  • Naive Bayes - predicting the direction of stock movement
  • Getting ready
  • Step 1 - collecting and describing the data
  • How to do it...
  • Step 2 - exploring the data
  • Step 3 - preparing variables to build datasets
  • Step 4 - building the model
  • Step 5 - creating data for a new, improved model
  • Step 6 - improving the model
  • Random forest - currency trading strategy
  • Getting ready
  • Step 1 - collecting and describing the data
  • How to do it...
  • Step 2 - exploring the data
  • Step 3 - preparing variables to build datasets
  • Step 4 - building the model
  • Support vector machine - currency trading strategy
  • Getting ready
  • Step 1 - collecting and describing the data
  • How to do it...
  • Step 2 - exploring the data
  • Step 3 - calculating the indicators
  • Step 4 - preparing variables to build datasets
  • Step 5 - building the model
  • Stochastic gradient descent - adult income
  • Getting ready
  • Step 1 - collecting and describing the data
  • How to do it...
  • Step 2 - exploring the data
  • Step 3 - preparing the data
  • Step 4 - building the model
  • Step 5 - plotting the model
  • Chapter 7: Unsupervised Learning
  • Introduction
  • Self-organizing map - visualizing of heatmaps
  • How to do it...
  • Step 1 - exploring data
  • Step 2 - training the model
  • Step 3 - plotting the model.
  • Vector quantization - image clustering
  • Getting ready
  • Step 1 - collecting and describing data
  • How to do it...
  • Step 2 - exploring data
  • Step 3 - data cleaning
  • Step 4 - visualizing cleaned data
  • Step 5 - building the model and visualizing it
  • Chapter 8: Reinforcement Learning
  • Introduction
  • Markov chains - the stocks regime switching model
  • Getting ready
  • Step 1 - collecting and describing the data
  • How to do it...
  • Step 2 - exploring the data
  • Step 3 - preparing the regression model
  • Step 4 - preparing the Markov-switching model
  • Step 5 - plotting the regime probabilities
  • Step 6 - testing the Markov switching model
  • Markov chains - the multi-channel attribution model
  • Getting ready
  • How to do it...
  • Step 1 - preparing the dataset
  • Step 2 - preparing the model
  • Step 3 - plotting the Markov graph
  • Step 4 - simulating the dataset of customer journeys
  • Step 5 - preparing a transition matrix heat map for real data
  • Markov chains - the car rental agency service
  • How to do it...
  • Step 1 - preparing the dataset
  • Step 2 - preparing the model
  • Step 3 - improving the model
  • Continuous Markov chains - vehicle service at a gas station
  • Getting ready
  • How to do it...
  • Step 1 - preparing the dataset
  • Step 2 - computing the theoretical resolution
  • Step 3 - verifying the convergence of a theoretical solution
  • Step 4 - plotting the results
  • Monte Carlo simulations - calibrated Hull and White short-rates
  • Getting ready
  • Step 1 - installing the packages and libraries
  • How to do it...
  • Step 2 - initializing the data and variables
  • Step 3 - pricing the Bermudan swaptions
  • Step 4 - constructing the spot term structure of interest rates
  • Step 5 - simulating Hull-White short-rates
  • Chapter 9: Structured Prediction
  • Introduction
  • Hidden Markov models - EUR and USD.
  • Getting ready.