Learning apache apex real-time streaming applications with apex

Designing and writing a real-time streaming publication with Apache Apex About This Book Get a clear, practical approach to real-time data processing Program Apache Apex streaming applications This book shows you Apex integration with the open source Big Data ecosystem Who This Book Is For This book...

Descripción completa

Detalles Bibliográficos
Otros Autores: Weise, Thomas, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Birmingham, [England] ; Mumbai, [India] : Packt Publishing 2017.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630115806719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Credits
  • About the Authors
  • About the Reviewer
  • www.PacktPub.com
  • Customer Feedback
  • Table of Contents
  • Preface
  • Chapter 1: Introduction to Apex
  • Unbounded data and continuous processing
  • Stream processing
  • Stream processing systems
  • What is Apex and why is it important?
  • Use cases and case studies
  • Real-time insights for Advertising Tech (PubMatic)
  • Industrial IoT applications (GE)
  • Real-time threat detection (Capital One)
  • Silver Spring Networks (SSN)
  • Application Model and API
  • Directed Acyclic Graph (DAG)
  • Apex DAG Java API
  • High-level Stream Java API
  • SQL
  • JSON
  • Windowing and time
  • Value proposition of Apex
  • Low latency and stateful processing
  • Native streaming versus micro-batch
  • Performance
  • Where Apex excels
  • Where Apex is not suitable
  • Summary
  • Chapter 2: Getting Started with Application Development
  • Development process and methodology
  • Setting up the development environment
  • Creating a new Maven project
  • Application specifications
  • Custom operator development
  • The Apex operator model
  • CheckpointListener/CheckpointNotificationListener
  • ActivationListener
  • IdleTimeHandler
  • Application configuration
  • Testing in the IDE
  • Writing the integration test
  • Running the application on YARN
  • Execution layer components
  • Installing Apex Docker sandbox
  • Running the application
  • Working on the cluster
  • YARN web UI
  • Apex CLI
  • Logging
  • Dynamically adjusting logging levels
  • Summary
  • Chapter 3: The Apex Library
  • An overview of the library
  • Integrations
  • Apache Kafka
  • Kafka input
  • Kafka output
  • Other streaming integrations
  • JMS (ActiveMQ, SQS, and so on)
  • Kinesis streams
  • Files
  • File input
  • File splitter and block reader
  • File writer
  • Databases
  • JDBC input
  • JDBC output
  • Other databases.
  • Transformations
  • Parser
  • Filter
  • Enrichment
  • Map transform
  • Custom functions
  • Windowed transformations
  • Windowing
  • Global Window
  • Time Windows
  • Sliding Time Windows
  • Session Windows
  • Window propagation
  • State
  • Accumulation
  • Accumulation Mode
  • State storage
  • Watermarks
  • Allowed lateness
  • Triggering
  • Merging of streams
  • The windowing example
  • Dedup
  • Join
  • State Management
  • Summary
  • Chapter 4: Scalability, Low Latency, and Performance
  • Partitioning and how it works
  • Elasticity
  • Partitioning toolkit
  • Configuring and triggering partitioning
  • StreamCodec
  • Unifier
  • Custom dynamic partitioning
  • Performance optimizations
  • Affinity and anti-affinity
  • Low-latency versus throughput
  • Sample application for dynamic partitioning
  • Performance - other aspects for custom operators
  • Summary
  • Chapter 5: Fault Tolerance and Reliability
  • Distributed systems need to be resilient
  • Fault-tolerance components and mechanism in Apex
  • Checkpointing
  • When to checkpoint
  • How to checkpoint
  • What to checkpoint
  • Incremental state saving
  • Incremental recovery
  • Processing guarantees
  • Example - exactly-once counting
  • The exactly-once output to JDBC
  • Summary
  • Chapter 6: Example Project - Real-Time Aggregation and Visualization
  • Streaming ETL and beyond
  • The application pattern in a real-world use case
  • Analyzing Twitter feed
  • Top Hashtags
  • TweetStats
  • Running the application
  • Configuring Twitter API access
  • Enabling WebSocket output
  • The Pub/Sub server
  • Grafana visualization
  • Installing Grafana
  • Installing Grafana Simple JSON Datasource
  • The Grafana Pub/Sub adapter server
  • Setting up the dashboard
  • Summary
  • Chapter 7: Example Project - Real-Time Ride Service Data Processing
  • The goal
  • Datasource
  • The pipeline.
  • Simulation of a real-time feed using historical data
  • Parsing the data
  • Looking up of the zip code and preparing for the windowing operation
  • Windowed operator configuration
  • Serving the data with WebSocket
  • Running the application
  • Running the application on GCP Dataproc
  • Summary
  • Chapter 8: Example Project - ETL Using SQL
  • The application pipeline
  • Building and running the application
  • Application configuration
  • The application code
  • Partitioning
  • Application testing
  • Understanding application logs
  • Calcite integration
  • Summary
  • Chapter 9: Introduction to Apache Beam
  • Introduction to Apache Beam
  • Beam concepts
  • Pipelines, PTransforms, and PCollections
  • ParDo - elementwise computation
  • GroupByKey/CombinePerKey - aggregation across elements
  • Windowing, watermarks, and triggering in Beam
  • Windowing in Beam
  • Watermarks in Beam
  • Triggering in Beam
  • Advanced topic - stateful ParDo
  • WordCount in Apache Beam
  • Setting up your pipeline
  • Reading the works of Shakespeare in parallel
  • Splitting each line on spaces
  • Eliminating empty strings
  • Counting the occurrences of each word
  • Format your results
  • Writing to a sharded text file in parallel
  • Testing the pipeline at small scale with DirectRunner
  • Running Apache Beam WordCount on Apache Apex
  • Summary
  • Chapter 10: The Future of Stream Processing
  • Lower barrier for building streaming pipelines
  • Visual development tools
  • Streaming SQL
  • Better programming API
  • Bridging the gap between data science and engineering
  • Machine learning integration
  • State management
  • State query and data consistency
  • Containerized infrastructure
  • Management tools
  • Summary
  • Index.