Emerging nanotechnologies in rechargeable energy storage systems

Emerging Nanotechnologies in Rechargeable Energy Storage Systems addresses the technical state-of-the-art of nanotechnology for rechargeable energy storage systems. Materials characterization and device-modeling aspects are covered in detail, with additional sections devoted to the application of na...

Descripción completa

Detalles Bibliográficos
Otros Autores: Rodriguez-Martinez, Lide, author (author), Rodriguez-Martinez, Lide, editor (editor), Omar, Noshin, editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boston, MA : Elsevier 2017.
Edición:1st edition
Colección:Micro & nano technologies.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630067506719
Tabla de Contenidos:
  • Cover
  • Title page
  • Copyright page
  • Contents
  • Contributors
  • Preface
  • Chapter One - Electrolytes for Li- and Na-Ion Batteries: Concepts, Candidates, and the Role of Nanotechnology
  • 1 - Introduction and Electrolyte Concept
  • 2 - Liquid Electrolytes
  • 2.1 - Importance of the SEI layer
  • 2.2 - Additives: general
  • 2.2.1 - Electrolyte additives used in Li-ion batteries
  • 2.2.1.1 - Additives for SEI forming improver
  • 2.2.1.2 - Additives for SEI morphology modifier
  • 2.2.1.3 - Additives for cathode protection
  • 2.2.1.4 - Salt stabilizer additives
  • 2.2.1.5 - Additives for safety protection
  • 2.2.1.6 - Other types of additives
  • 2.3 - Electrode-electrolyte compatibility: SEI with ionic liquids
  • 2.4 - Use of nanotechnology in liquid electrolytes
  • 3 - Solid Electrolytes
  • 3.1 - Polymer-based electrolytes
  • 3.1.1 - Solid polymer electrolytes
  • 3.1.2 - Gel polymer electrolytes
  • 3.2 - Inorganic electrolytes
  • 3.2.1 - Metal oxides
  • 3.2.2 - Metal sulfides
  • 3.3 - Composite solid electrolytes
  • 3.3.1 - Sulfide-oxide composite inorganic electrolytes
  • 3.3.2 - Organic-inorganic composite electrolytes
  • 3.3.3 - Conclusions
  • 3.4 - Integration of solid electrolytes into all-solid-state battery devices
  • 3.5 - The promise of nanostructured electrolytes
  • 4 - Conclusions
  • Glossary
  • References
  • Chapter Two - Review of Nanotechnology for Anode Materials in Batteries
  • 1 - A High-Performance Anode
  • 2 - Benefits of a Nanostructured Anode
  • 3 - Geometrical Aspects and Design of Nanostructured Anodes
  • 3.1 - Low-dimensional nanostructures
  • 3.2 - High-dimensional nanostructure
  • 4 - Carbon-Based Anodes
  • 5 - Silicon-Based Anodes
  • 6 - Metal Alloy Anodes
  • 7 - Metal Oxide-Based Anodes
  • 8 - Metal Phosphide and Sulfide Anodes
  • 9 - Summary and Conclusions
  • Glossary
  • References.
  • Chapter Three - Review of Nanotechnology for Cathode Materials in Batteries
  • 1 - Introduction
  • 2 - Nanostructural Design and Synthesis of Cathode Materials for Lithium-Ion Batteries
  • 2.1 - Nanotemplate methods
  • 2.2 - Solvothermal/hydrothermal methods
  • 2.3 - Solid-state reaction methods
  • 2.4 - Coprecipitation methods
  • 3 - Nanoscale Surface Modification on Cathode Materials for Lithium-Ion Batteries
  • 3.1 - Atomic layer deposition
  • 3.2 - Chemical vapor deposition
  • 3.3 - Sputtering
  • 3.4 - Wet-coating/sol-gel method
  • 4 - Conclusions
  • Glossary
  • References
  • Chapter Four - Nanotechnology in Electrochemical Capacitors
  • 1 - Introduction
  • 2 - Basic Principles and Classification of Electrochemical Capacitors
  • 2.1 - Supercapacitor materials and cell configurations
  • 2.2 - Electrolytes for supercapacitors
  • 2.3 - Electroanalytical methods for studying supercapacitors: cyclic voltammetry, galvanostatic cycling, impedance spectroscopy
  • 3 - Parameters Governing Supercapacitor Performance
  • 3.1 - Energy and power density of supercapacitors
  • 3.2 - Other relevant metrics: cost, cycle life, temperature range, safety
  • 4 - Nanotechnology in Electrical Double Layer Capacitors
  • 4.1 - Electrical double layer: nanopores versus planar surface
  • 4.2 - Tuning nanoporous carbons to optimum capacitive charge storage
  • 5 - Pseudocapacitive Materials
  • 5.1 - Pseudocapacitance in carbon nanomaterials: charge storage by carbon functionalities and reversible hydrogen electrosorption
  • 5.2 - Nanosizing in pseudocapacitive inorganic materials: oxide supercapacitors
  • 5.3 - Pseudocapacitive charge storage by composites between nanocarbons and inorganic materials
  • 6 - Conclusions and Perspectives
  • Glossary
  • References
  • Chapter Five - Characterization of Nanomaterials for Energy Storage
  • 1 - Macro- and Microscale Characterization.
  • 2 - Ex Situ, "Postmortem" Analysis versus In Situ Electrochemistry
  • 3 - Structural Analysis
  • 4 - Chemical Analysis (Spectroscopic Techniques)
  • 5 - Nanoscale Characterization
  • 5.1 - Nanoscale resolution in 3D
  • 5.2 - Nanoscale resolution in lower dimensions (on a surface or in a slab of material)
  • 6 - Electron Microscopy
  • 6.1 - SEM
  • 6.2 - TEM
  • 6.3 - Application of SEM to materials characterization
  • 6.4 - Application of TEM to materials characterization
  • 7 - Improved Instrumentation and Inspirations for New Methods
  • 7.1 - New developments for standard techniques
  • 7.2 - Inspirations from surface science techniques
  • 8 - Summary
  • Glossary
  • References
  • Chapter Six - Electrochemical-Thermal Characterization and Thermal Modeling for Batteries
  • 1 - Introduction
  • 2 - Heat Generation in Lithium-Ion Batteries
  • 2.1 - Reversible and irreversible heat
  • 2.1.1 - Reversible heat
  • 2.1.2 - Irreversible heat
  • 2.2 - Abuse leading to thermal runaway
  • 3 - Electrochemical-Calorimetric Measurements on Lithium-Ion Batteries
  • 3.1 - Isothermal heat conduction calorimetry
  • 3.2 - Accelerating rate calorimetry
  • 3.2.1 - Cycling under isoperibolic conditions
  • 3.2.2 - Cycling under adiabatic conditions
  • 3.2.3 - Determination of heat data
  • 3.2.3.1 - Effective specific heat capacity of a cell
  • 3.2.3.2 - Heat transfer coefficient
  • 3.2.4 - Thermal runaway testing in an ARC
  • 4 - Thermal Modeling of Lithium-Ion Batteries
  • 4.1 - The energy conservation
  • 4.2 - Identifying the electrochemical heat sources
  • 4.3 - Modeling the thermal runaway and exothermic heat sources
  • 5 - Simulations With COMSOL Multiphysics
  • 5.1 - Adiabatic simulations up to a thermal runaway
  • 5.2 - Isoperibolic simulations of cell cycling
  • 6 - Conclusions
  • Glossary
  • References.
  • Chapter Seven - Life Cycle Assessment of Nanotechnology in Batteries for Electric Vehicles
  • 1 - Introduction
  • 1.1 - Problem setting and environmental concerns related to nanotechnology
  • 1.2 - Life cycle assessments and battery nanotechnology
  • 1.3 - Life cycle assessment methodology
  • 1.3.1 - Goal and scope definition
  • 1.3.1.1 - Goal and scope
  • 1.3.1.2 - Functional unit
  • 1.3.1.3 - System boundaries
  • 1.3.2 - Inventory analysis
  • 1.3.3 - Impact assessment
  • 1.3.4 - Interpretation
  • 2 - Case Study: Use of Nanomaterials in Li-Ion Battery Anodes
  • 2.1 - Goal and scope of the analysis
  • 2.1.1 - Goal
  • 2.1.2 - Scope
  • 2.2 - Life cycle inventory of Si nanowire-based batteries and conventional graphite anode-based batteries
  • 2.2.1 - Battery characterization
  • 2.2.2 - Manufacturing stage
  • 2.2.3 - Use stage
  • 2.2.4 - End of life
  • 3 - Life Cycle Impact Assessment
  • 3.1 - Climate change
  • 3.2 - Cumulative energy demand
  • 3.3 - Human toxicity
  • 4 - Discussion and Conclusions
  • Glossary
  • References
  • Chapter Eight - Safety of Rechargeable Energy Storage Systems with a focus on Li-ion Technology
  • 1 - Introduction
  • 2 - Hazards
  • 2.1 - Mechanical/physical hazards
  • 2.1.1 - Fire
  • 2.1.2 - Explosion
  • 2.2 - Electrical hazards
  • 2.3 - Chemical hazards
  • 3 - Failure Scenarios
  • 3.1 - Overheating
  • 3.2 - Mechanical deformation
  • 3.3 - External short circuit
  • 3.4 - Overcharge
  • 4 - Risk Mitigation
  • 4.1 - Materials selection
  • 4.1.1 - Electrodes
  • 4.1.1.1 - Cathode materials
  • 4.1.1.2 - Anode material
  • 4.1.2 - Binders
  • 4.1.3 - Separators
  • 4.1.4 - Electrolytes
  • 4.2 - Protective devices
  • 4.3 - System-level approaches
  • 5 - Safety Tests
  • 5.1 - Thermal tests
  • 5.2 - Mechanical tests
  • 5.3 - Electrical tests
  • 5.4 - Chemical hazards monitoring
  • 5.5 - Hazards considerations about safety testing.
  • 6 - Conclusions and Outlook
  • Glossary
  • References
  • Chapter Nine - Application of the Energy Storage Systems
  • 1 - Introduction: Energy Storage Systems and Their Application
  • 2 - Characterization of Storage Cells and Devices, Parameters, and Features
  • 3 - Overview of Storage Cells, Modules, and Systems
  • 3.1 - Mechanical storage
  • 3.2 - Electrical storage
  • 3.3 - Electrochemical storage
  • 3.4 - Hybrid concepts
  • 4 - Applications That Use Storage Facilities
  • 5 - Conclusions
  • Glossary
  • References
  • Index
  • Back cover.