Microsystems for bioelectronics scaling and performance limits
The advances in microsystems offer new opportunities and capabilities to develop systems for biomedical applications, such as diagnostics and therapy. There is a need for a comprehensive treatment of microsystems and in particular for an understanding of performance limits associated with the shrin...
Otros Autores: | , , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Amsterdam, [Netherlands] :
William Andrew
2015.
|
Edición: | Second edition |
Colección: | Micro & nano technologies.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630026906719 |
Tabla de Contenidos:
- Cover; Title Page; Copyright Page; Contents; Preface-Second Edition; Chapter 1 - The nanomorphic cell: atomic-level limits of computing; List of Acronyms; 1.1 - Introduction; 1.2 - Electronic Scaling; 1.3 - Nanomorphic Cell: Atomic Level Limits of Computing; 1.4 - The Nanomorphic Cell vis-à-vis the Living Cell; 1.5 - Cell Parameters: Mass, Size, and Energy; 1.6 - Current Status of Technologies for Autonomous Microsystems; 1.6.1 - Implantable and Ingestible Medical Devices; 1.6.2 - Intelligent Integrated Sensor Systems; 1.7 - Summary; 1.8 - Appendix; References
- Chapter 2 - Basic physics of ICTList of Acronyms; 2.1 - Introduction; 2.2 - A central concept: Energy barrier; 2.3 - Physical origin of the barrier potential in materials systems; 2.4 - Two-sided barrier; 2.4.1 - Example: Electromechanical switch; 2.5 - Model Case: An Electrical Capacitor; 2.6 - Barrier transitions; 2.7 - Quantum Confinement; 2.8 - Quantum conductance; 2.9 - Electron transport in the presence of barriers; 2.9.1 - Over-barrier transport; 2.9.2 - Tunneling transport; 2.10 - Barriers in semiconductors; 2.10.1 - Metal-semiconductor interfaces; 2.10.2 - pn-junction; 2.11 - Summary
- ReferencesChapter 3 - Energy in the small: micro-scale energy sources; List of Acronyms; 3.1 - Introduction; 3.2 - Storage Capacitor; 3.2.1 - Example: Maximum energy stored in a capacitor; 3.3 - Electrochemical Energy: Fundamentals of Galvanic Cells; 3.3.1 - Energy Stored in the Galvanic Cell; 3.3.2 - Power Delivery by a Galvanic Cell; 3.3.3 - Current Status of Miniature Galvanic Cells; 3.3.4 - Miniature Biofuel Cells; 3.3.5 - Remarks on Biocompatibility; 3.4 - Miniature Supercapacitors; Miniature supercapacitors: Status and potential directions; 3.5 - Energy from Radioisotopes
- 3.5.1 - Radioisotope Energy Sources3.5.2 - Radioisotopic Energy Conversion; 3.5.3 - Practical Miniature Radioisotope Energy Sources; 3.6 - Remarks on Energy Harvesting; 3.6.1 - Photovoltaics; 3.6.2 - Radio Frequency (RF)/Microwave Energy Harvesting; 3.6.3 - Kinetic Energy Harvesting; 3.6.4 - Thermal Energy Harvesting; 3.7 - Summary; 3.8 - Appendix. A kinetic model to assess the limits of heat removal; References; Chapter 4 - Fundamental limits for logic and memory; List of Acronyms; 4.1 - Introduction; 4.2 - Information and Information Processing; 4.3 - Basic Physics of Binary Elements
- 4.3.1 - Distinguishable States4.3.2 - Energy Barrier Framework for the Operating Limits of Binary Switches; A. Limits on barrier height; B. Limits on Size; C. Limits on Speed; D. Combined Effect of Classic and Quantum Errors; 4.3.3 - A summary of device scaling limits; 4.3.4 - Charge-based Binary Logic Switch; 4.3.5 - Charge-based Memory Element; DRAM; SRAM; Floating gate/flash memory; 4.4 - System-level Analysis; 4.4.1 - Tiling Considerations: Device density; 3D Tiling of Flash Memory; 4.4.2 - Energy adjustment for system reliability; 4.4.3 - Models for Connected Binary Switches
- A. Juxtaposed Switches