Real-world machine learning
Summary Real-World Machine Learning is a practical guide designed to teach working developers the art of ML project execution. Without overdosing you on academic theory and complex mathematics, it introduces the day-to-day practice of machine learning, preparing you to successfully build and deploy...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Shelter Island, New York :
Manning Publications
[2017]
|
Edición: | 1st edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629882806719 |
Tabla de Contenidos:
- Intro
- Copyright
- Brief Table of Contents
- Table of Contents
- Foreword
- Preface
- Acknowledgments
- About this Book
- About the Authors
- About the Cover Illustration
- Part 1. The machine-learning workflow
- Chapter 1. What is machine learning?
- Chapter 2. Real-world data
- Chapter 3. Modeling and prediction
- Chapter 4. Model evaluation and optimization
- Chapter 5. Basic feature engineering
- Part 2. Practical application
- Chapter 6. Example: NYC taxi data
- Chapter 7. Advanced feature engineering
- Chapter 8. Advanced NLP example: movie review sentiment
- Chapter 9. Scaling machine-learning workflows
- Chapter 10. Example: digital display advertising
- Appendix. Popular machine-learning algorithms
- Index
- List of Figures
- List of Tables
- List of Listings.