Numerical Python A Practical Techniques Approach for Industry
Numerical Python by Robert Johansson shows you how to leverage the numerical and mathematical capabilities in Python, its standard library, and the extensive ecosystem of computationally oriented Python libraries, including popular packages such as NumPy, SciPy, SymPy, Matplotlib, Pandas, and more,...
Autor principal: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Berkeley, CA :
Apress
2015.
|
Edición: | 1st ed. 2015. |
Colección: | Expert's voice in Python.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629822306719 |
Tabla de Contenidos:
- 1. Introduction to computing with Python
- 2. Vectors, matrices and multidimensional arrays
- 3. Symbolic computing
- 4. Plotting and visualization
- 5. Equation solving
- 6. Optimization
- 7. Interpolation
- 8. Integration
- 9. Ordinary differential equations
- 10. Sparse matrices and graphs
- 11. Partial differential equations
- 12. Data processing and analysis
- 13. Statistics
- 14. Statistical modeling
- 15. Machine learning
- 16. Bayesian statistics
- 17. Signal and image processing
- 18. Data input and output
- 19. Code optimization
- 20. Appendix: Installation.-.