Machine learning an algorithmic perspective

A Proven, Hands-On Approach for Students without a Strong Statistical Foundation Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning a...

Descripción completa

Detalles Bibliográficos
Otros Autores: Marsland, Stephen, eauthor (eauthor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton, FL : Chapman and Hall/CRC, an imprint of Taylor and Francis 2014.
Edición:Second edition
Colección:Chapman & Hall/CRC machine learning & pattern recognition series.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629774506719
Tabla de Contenidos:
  • Chapter 1. Introduction
  • Chapter 2. Preliminaries
  • Chapter 3. Neurons, neural networks, and linear discriminants
  • Chapter 4. The multi-layer perceptron
  • Chapter 5. Radial basis functions and splines
  • Chapter 6. Dimensionality reduction
  • Chapter 7. Probabilistic learning
  • Chapter 8. Support vector machines
  • Chapter 9. Optimisation and search
  • Chapter 10. Evolutionary learning
  • Chapter 11. Reinforcement learning
  • Chapter 12. Learning with trees
  • Chapter 13. Decision by committee: ensemble learning
  • Chapter 14. Unsupervised learning
  • Chapter 15. Markov Chain Monte Carlo (MCMC) methods
  • Chapter 16. Graphical models
  • Chapter 17. Symmetric weights and deep belief networks
  • Chapter 18. Gaussian processes
  • Appendix A: .Python.