Computational statistics an introduction to R

Suitable for a compact course or self-study, Computational Statistics: An Introduction to R illustrates how to use the freely available R software package for data analysis, statistical programming, and graphics. Integrating R code and examples throughout, the text only requires basic knowledge of s...

Descripción completa

Detalles Bibliográficos
Otros Autores: Sawitzki, Gunther., author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton : CRC Press 2009.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629752906719
Tabla de Contenidos:
  • 1 Basic data analysis
  • R programming conventions
  • Generation of random numbers and patterns
  • Random numbers
  • Patterns
  • Case study: distribution diagnostics
  • Distribution functions
  • Histograms
  • Barcharts
  • Statistics of distribution functions; Kolmogorov-Smirnov tests
  • Monte Carlo confidence bands
  • Statistics of histograms and related plots; X2-tests
  • Moments and quantiles
  • R complements
  • Random numbers
  • Graphical comparisons
  • Functions
  • Enhancing graphical displays
  • R internals
  • parse
  • eval
  • print
  • Executing files
  • Packages
  • Statistical summary
  • Literature and additional references
  • 2 Regression
  • General regression model
  • Linear model
  • Factors
  • Least squares estimation
  • Regression diagnostics
  • More examples for linear models
  • Model formulae
  • Gauss-Markov estimator and residuals
  • Variance decomposition and analysis of variance
  • Simultaneous inference
  • Scheff́e's confidence bands
  • Tukey's confidence intervals
  • Case study: titre plates
  • Beyond linear regression
  • Transformations
  • Generalised linear models
  • Local regression
  • R complements
  • Discretisation
  • External data
  • Testing software
  • R data types
  • Classes and polymorphic functions
  • Extractor functions
  • Statistical summary
  • Literature and additional references
  • 3 Comparisons
  • Shift/scale families, and stochastic order
  • QQ plot, PP plot, and comparison of distributions
  • Kolmogorov-Smirnov tests
  • Tests for shift alternatives
  • Road map
  • Power and confidence
  • Theoretical power and confidence
  • Simulated power and confidence
  • Quantile estimation
  • Qualitative features of distributions
  • Statistical summary
  • Literature and additional references
  • 4 Dimensions 1, 2, 3, ..., c
  • R Complements
  • Dimensions
  • Selections
  • Projections
  • Marginal distributions and scatter plot matrices
  • Projection pursuit
  • Projections for dimensions 1, 2, 3, ... 7
  • Parallel coordinates
  • Sections, conditional distributions and coplots
  • Transformations and dimension reduction
  • Higher dimensions
  • Linear case
  • Partial residuals and added variable plots
  • Non-linear case
  • Example: cusp non-linearity
  • Case study: Melbourne temperature data
  • Curse of dimensionality
  • Case study: body fat
  • High dimensions
  • Statistical summary
  • R as a programming language and environment
  • Help and information
  • Names and search paths
  • Administration and customisation
  • Basic data types
  • Output for objects
  • Object inspection
  • System inspection
  • Complex data types
  • Accessing components
  • Data manipulation
  • Operators
  • Functions
  • Debugging and profiling
  • Control structures
  • Input and output to data streams; external data
  • Libraries, packages
  • Mathematical operators and functions; linear algebra
  • Model descriptions
  • Graphic functions
  • High-level graphics
  • Low-level graphics
  • Annotations and legends
  • Graphic parameters and Llyout
  • Elementary statistical functions
  • Distributions, random numbers, densities...
  • Computing on the language.