Thermofluid modeling for energy efficiency applications

Thermofluid Modeling for Sustainable Energy Applications provides a collection of the most recent, cutting-edge developments in the application of fluid mechanics modeling to energy systems and energy efficient technology. Each chapter introduces relevant theories alongside detailed, real-life case...

Descripción completa

Detalles Bibliográficos
Otros Autores: Khan, M. Masud K., editor (editor), Hassan, Nur M. S., editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Academic Press 2016.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629687506719
Tabla de Contenidos:
  • Front Cover
  • Thermofluid Modeling for Energy Efficiency Applications
  • Copyright Page
  • Contents
  • List of Contributors
  • Preface
  • 1 Performance Evaluation of Hybrid Earth Pipe Cooling with Horizontal Piping System
  • 1.1 Introduction
  • 1.2 Earth Pipe Cooling Technology
  • 1.3 Green Roof System
  • 1.4 Experimental Design and Measurement
  • 1.5 Model Description
  • 1.5.1 Modeling Equation
  • 1.5.2 Geometry of the Model
  • 1.5.3 Mesh Generation
  • 1.5.4 Solver Approach
  • 1.6 Results and Discussion
  • 1.7 Conclusion
  • Acknowledgments
  • References
  • 2 Thermal Efficiency Modeling in a Subtropical Data Center
  • 2.1 Introduction
  • 2.2 CFD Modeling of Data Center
  • 2.2.1 Simulation Approach
  • 2.2.2 Modeling Equations
  • 2.3 Data Center Description
  • 2.4 Results and Discussion
  • 2.4.1 Experimental
  • 2.4.2 Simulations Results
  • 2.4.2.1 Data Center Room and Rack Thermal Maps
  • 2.4.2.2 Static Pressure Map
  • 2.4.2.3 Air Flow Paths
  • 2.5 CRAC Performance
  • 2.6 Conclusions and Recommendations
  • Nomenclature
  • References
  • 3 Natural Convection Heat Transfer in the Partitioned Attic Space
  • 3.1 Introduction
  • 3.2 Problem Formulation
  • 3.3 Numerical Approach and Validation
  • 3.4 Results and Discussions
  • 3.4.1 Development of Coupled Thermal Boundary Layer
  • 3.4.2 Effect of Geometry Configuration
  • 3.4.3 Effect of Rayleigh Number
  • 3.5 Conclusions
  • References
  • 4 Application of Nanofluid in Heat Exchangers for Energy Savings
  • 4.1 Introduction
  • 4.2 Types of Nanoparticles and Nanofluid Preparation
  • 4.3 Application of Nanofluid in Heat Exchangers
  • 4.4 Physical Model and Boundary Values
  • 4.5 Governing Equations
  • 4.6 Thermal and Fluid Dynamic Analysis
  • 4.7 Thermophysical Properties of Nanofluid
  • 4.7.1 Thermal Conductivity
  • 4.7.2 Dynamic Viscosity
  • 4.7.3 Density
  • 4.7.4 Specific Heat
  • 4.8 Numerical Method.
  • 4.9 Code Validation
  • 4.10 Grid Independence Test
  • 4.11 Results and Discussions
  • 4.11.1 Heat Transfer Coefficient for Different Volume Fraction of Nanofluid
  • 4.11.2 Heat Transfer Coefficient for Different Nanofluids at the Same Volume Fraction
  • 4.11.3 Pumping Power
  • 4.12 Case Study for a Typical Heat Exchanger
  • 4.13 Conclusions
  • Nomenclature
  • Greek symbols
  • Subscripts
  • Dimensionless parameter
  • References
  • 5 Effects of Perforation Geometry on the Heat Transfer Performance of Extended Surfaces
  • 5.1 Introduction
  • 5.2 Problem Description
  • 5.3 Governing Equations
  • 5.4 Numerical Model Formulation
  • 5.4.1 Geometric Configuration and Computational Procedure
  • 5.4.2 Validation of the Numerical Simulation
  • 5.5 Results and Discussions
  • 5.5.1 Nusselt Number Variation with the Reynolds Number
  • 5.5.2 Effects of Drag Force
  • 5.5.3 Heat Removal Rate at Various Reynolds Numbers
  • 5.6 Conclusions
  • References
  • 6 Numerical Study of Flow Through a Reducer for Scale Growth Suppression
  • 6.1 Introduction
  • 6.2 The Bayer Process
  • 6.2.1 Bayer Process Scaling
  • 6.3 Fundamentals of Scaling
  • 6.4 Particle Deposition Mechanisms
  • 6.5 Fluid Dynamics Analysis in Scale Growth and Suppression
  • 6.6 Target Model
  • 6.7 Numerical Method
  • 6.8 Grid Independence Test
  • 6.9 Results and Discussion
  • 6.9.1 Variation of Fluctuating Velocity Components along Radius
  • 6.9.2 Variation of Fluctuating Velocity Components Along Reducer Wall
  • 6.9.3 Variation of Turbulent Kinetic Energy Along Radius
  • 6.10 Conclusions
  • Nomenclature
  • Greek symbols
  • Subscripts
  • References
  • 7 Parametric Analysis of Thermal Comfort and Energy Efficiency in Building in Subtropical Climate
  • 7.1 Introduction
  • 7.2 Climate Condition
  • 7.3 Envelope Construction
  • 7.3.1 Conventional Construction Systems
  • 7.3.2 Novel Construction Systems.
  • 7.4 Simulation Principles
  • 7.4.1 Model Development
  • 7.5 Results and Analysis
  • 7.6 Conclusions
  • References
  • 8 Residential Building Wall Systems: Energy Efficiency and Carbon Footprint
  • 8.1 Introduction
  • 8.1.1 Thermal Comfort
  • 8.1.2 Thermal Insulation
  • 8.1.3 Lag Time
  • 8.1.4 R-Value
  • 8.1.5 Thermal Masses
  • 8.2 Design Patterns of Australian Houses
  • 8.2.1 Timber Weatherboard House
  • 8.2.2 Fibro Cement Weatherboard House
  • 8.2.3 Double Brick Veneer House
  • 8.2.4 Single Brick Veneer House (Conventional House)
  • 8.3 House Wall Systems
  • 8.3.1 House Wall Configuration
  • 8.3.2 Conventional House Wall
  • 8.4 Energy Star Rating and Thermal Performance Modeling Tools
  • 8.5 Results
  • 8.5.1 Conventional House Wall (Benchmark)
  • 8.5.2 New House Wall
  • 8.5.3 Inner and Outer Insulation Positions
  • 8.6 Discussion
  • 8.6.1 Industrial Implications
  • 8.7 Concluding Remarks
  • References
  • 9 Cement Kiln Process Modeling to Achieve Energy Efficiency by Utilizing Agricultural Biomass as Alternative Fuels
  • 9.1 Introduction
  • 9.2 Cement Manufacturing Process
  • 9.2.1 Kiln
  • 9.3 Alternative Fuels
  • 9.4 Agricultural Biomass
  • 9.4.1 Agricultural Biomasses in Australia
  • 9.4.2 Selection of Agricultural Biomass
  • 9.4.3 Chemical Composition of Alternative Fuels
  • 9.5 Model Development and Validation
  • 9.5.1 Model Principle
  • 9.5.2 Model Assumption
  • 9.5.3 Model Validation
  • 9.5.4 Modified Kiln Model
  • 9.6 Simulation Results and Discussion
  • 9.7 Conclusion
  • References
  • 10 Modeling and Simulation of Heat and Mass Flow by ASPEN HYSYS for Petroleum Refining Process in Field Application
  • 10.1 Introduction
  • 10.2 Heating Furnace
  • 10.2.1 Burner
  • 10.2.2 Furnace Tube/Coil System
  • 10.2.3 Furnace Wall System
  • 10.2.4 Flue Gas Venting System
  • 10.2.5 Blower, Fire Watch Door, Explosion-Proof Door
  • 10.2.6 Control System.
  • 10.2.7 Furnace Drying Technique
  • 10.3 Distillation Unit
  • 10.4 Simulation and Optimization of the Refining Processes
  • 10.4.1 ASPEN™ HYSYS Working Phenomena
  • 10.4.2 Techniques Used for This Simulation
  • 10.4.3 Basic Assumptions
  • 10.4.4 Simulation for the Case Study Plant
  • 10.4.5 Heat and Material Balance
  • 10.4.6 Energy Usage Analysis
  • 10.4.7 Energy Management
  • 10.4.7.1 Short-Term Measures
  • 10.4.7.2 Medium-Term Measures
  • 10.4.7.3 Long-Term Measures
  • 10.5 Conclusion
  • References
  • 11 Modeling of Solid and Bio-Fuel Combustion Technologies
  • 11.1 Introduction
  • 11.2 Different Carbon Capture Technologies
  • 11.3 Status of Coal/Biomass Combustion Technology
  • 11.4 Modeling of Coal/Biomass Combustion
  • 11.4.1 Fundamentals of Combustion Modeling
  • 11.4.2 Recent Numerical Activities in Combustion
  • 11.5 Modeling of Packed Bed Combustion
  • 11.5.1 Recent Numerical Models
  • 11.5.2 Modeling Methodology
  • 11.6 Modeling of Slagging in Combustion
  • 11.6.1 Fundamentals of Slagging
  • 11.6.2 Processes Involved in Slagging
  • 11.6.3 Recent Numerical Works
  • 11.7 Example A: Lab-Scale Modeling for Coal Combustion
  • 11.7.1 Experimental Study Considered
  • 11.7.2 Furnace Description and Operating Conditions
  • 11.7.3 Effect of Different Performance Parameters
  • 11.8 Example B: Lab-Scale Modeling for Coal/Biomass Co-Firing
  • 11.8.1 Experimental Study Considered
  • 11.8.2 Investigated Cases
  • 11.8.3 Outcome of the Investigation
  • 11.9 Conclusion
  • Nomenclature
  • Greek Symbols
  • List of Abbreviations
  • References
  • 12 Ambient Temperature Rise Consequences for Power Generation in Australia
  • 12.1 Introduction
  • 12.1.1 Energy Use Projection for Australia up to Year 2035
  • 12.1.2 Projected Power Generation in Australia up to the Year 2100
  • 12.1.3 The Rise of Ambient Temperature in Australia up to the year 2100.
  • 12.1.3.1 Impact of Ambient Temperature Change in Australia
  • 12.1.3.2 Impact of Ambient Temperature Change on Energy and Infrastructure in Australia
  • 12.1.4 Australian Ambient Temperature Change Scenario and Model Analysis
  • 12.1.4.1 Scenario Analysis
  • 12.1.4.2 Model Analysis
  • 12.1.5 Impact of Ambient Temperature Rise on Power Generation in Australia's States and Territories
  • 12.1.5.1 Impact on Power Generation in New South Wales
  • 12.1.5.2 Impact on Power Generation in Victoria
  • 12.1.5.3 Impact on Power Generation in Queensland
  • 12.1.5.4 Impact on Power Generation in South Australia
  • 12.1.5.5 Impact on Power Generation in Western Australia
  • 12.1.5.6 Impact on Power Generation in the Northern Territory
  • 12.1.5.7 Impact on Power Generation in Tasmania
  • 12.2 Overall Impact on Power Generation in Australia
  • 12.3 Reduction of Power Generation Efficiency in Australia from 2030 to 2100
  • 12.4 Concluding Remarks
  • References
  • Index
  • Back Cover.