Statistics and data analysis for microarrays using R and bioconductor
Richly illustrated in color, Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition provides a clear and rigorous description of powerful analysis techniques and algorithms for mining and interpreting biological information. Omitting tedious details, heavy formalisms,...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Boca Raton, FL :
Chapman and Hall/CRC, an imprint of Taylor and Francis
2011.
|
Edición: | 2nd ed |
Colección: | Chapman and Hall/CRC mathematical & computational biology series.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629678206719 |
Tabla de Contenidos:
- Front Cover; Dedication; Contents; List of Figures; List of Tables; Preface; 1. Introduction; 2. The cell and its basic mechanisms; 3. Microarrays; 4. Reliability and reproducibility issues in DNA microarray measurements; 5. Image processing; 6.Introduction to R; 7. Bioconductor: principles and illustrations; 8. Elements of statistics; 9. Probability distributions; 10. Basic statistics in R; 11. Statistical hypothesis testing; 12. Classical approaches to data analysis; 13. Analysis of Variance - ANOVA; 14. Linear models in R; 15. Experiment design; 16. Multiple comparisons
- 17. Analysis and visualization tools18. Cluster analysis; 19. Quality control; 20. Data preprocessing and normalization ; 21. Methods for selecting differentially expressed genes; 22. The Gene Ontology (GO); 23. Functional analysis and biological interpretation of microarray data; 24. Uses, misuses, and abuses in GO profiling; 25. A comparison of several tools for ontological analysis; 26. Focused microarrays - comparison and selection; 27. ID Mapping issues; 28. Pathway analysis; 29. Machine learning techniques; 30. The road ahead; Bibliography; Back Cover