Fuel flexible energy generation solid, liquid and gaseous fuels

Fuel Flexible Energy Generation: Solid, Liquid and Gaseous Fuels provides updated information on flexible fuel energy generation, the process by which one or more fuels can be combusted in the same boiler or turbine to generate power. By adapting or building boilers and turbines to accept multiple f...

Descripción completa

Detalles Bibliográficos
Otros Autores: Oakey, John, editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Amsterdam, [Netherlands] : Woodhead Publishing 2016.
Edición:1st edition
Colección:Woodhead Publishing in energy ; Number 91.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629669806719
Tabla de Contenidos:
  • Front Cover
  • Related titles
  • Fuel Flexible Energy Generation
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Energy
  • One - Introduction and fuel types
  • 1 - Introduction to fuel flexible energy
  • 1.1 Introduction
  • 1.2 Conventional energy sources
  • 1.2.1 Petroleum
  • 1.2.2 Natural gas
  • 1.2.3 Coal
  • 1.2.4 Shale gas
  • 1.2.5 Oil from shale
  • 1.3 Unconventional energy sources
  • 1.3.1 Tar sand bitumen
  • 1.3.2 Oil shale
  • 1.3.3 Biomass
  • 1.4 Fischer-Tropsch process
  • 1.5 Electrical energy
  • 1.5.1 Power plant operations
  • 1.5.2 Other fuels
  • 1.5.2.1 Biomass
  • 1.5.2.2 Waste
  • 1.6 Fuel flexibility
  • 1.6.1 Environmental issues
  • 1.6.2 Trends and technological challenges
  • 1.7 Conclusions
  • References
  • 2 - Solid fuel types for energy generation: coal and fossil carbon-derivative solid fuels
  • 2.1 Introduction
  • 2.2 Fossil fuel feedstocks
  • 2.2.1 World availability of coal
  • 2.2.2 Coal classification
  • 2.2.2.1 Peat
  • 2.2.2.2 Lignite
  • 2.2.2.3 Subbituminous coal
  • 2.2.2.4 Bituminous coal
  • 2.2.2.5 Anthracite
  • 2.2.3 Coal characterization
  • 2.2.3.1 Bases for analyses
  • 2.2.3.2 Moisture determination
  • 2.2.3.3 Proximate analysis
  • 2.2.3.4 Ultimate analysis
  • 2.2.3.5 Heating value
  • 2.2.3.6 Grindability
  • 2.2.3.6 Sulfur forms
  • 2.2.3.7 Free-swelling index
  • 2.2.3.8 Ash fusion temperatures
  • 2.2.3.9 Ash composition
  • 2.3 Fuels derived from coal
  • 2.3.1 Coke
  • 2.3.2 Gaseous fuels from coal
  • 2.3.2.1 Coke oven gas
  • 2.3.2.2 Blast furnace gas
  • 2.3.2.3 Water gas
  • 2.3.2.4 Producer gas
  • 2.3.2.5 Byproduct gas from gasification
  • 2.3.3 Fischer-Tropsch Process
  • 2.4 Coal supply chain main characteristics
  • 2.4.1 Coal mining
  • 2.4.1.1 Underground mining
  • 2.4.1.2 Surface mining
  • 2.4.2 Coal Preparation
  • 2.4.3 Coal transportation
  • 2.5 Future trends.
  • 2.5.1 Carbon capture and storage
  • 2.5.2 Lignite pre-drying
  • 2.6 Summary
  • Sources of further information
  • References
  • 3 - Biomass and agricultural residues for energy generation
  • 3.1 Introduction
  • 3.2 Biomass resources and supply chains
  • 3.2.1 European and global woody biomass resources and supply chains
  • 3.2.2 Herbaceous and fruit biomass resources and supply chains
  • 3.3 Biomass properties and measurement of properties
  • 3.3.1 Properties of biomass
  • 3.3.2 Sampling and sample reduction
  • 3.3.3 Measurement of main properties and applied standards
  • 3.3.3.1 Proximate and ultimate analysis
  • 3.3.3.2 Calorific value
  • 3.3.3.3 Moisture content
  • 3.3.3.4 Particle-size determination
  • 3.3.3.5 Bulk density
  • 3.4 Future trends
  • Symbols and abbreviations
  • Terminology
  • References
  • Two - Fuel preparation, handling and transport
  • 4 - Biomass fuel transport and handling
  • 4.1 Introduction
  • 4.1.1 The critical importance of fuel handling to cost-effective biomass fuel valorisation
  • 4.1.2 The special features of biomass as a fuel
  • 4.1.3 The underlying causes of handling problems with biomass
  • 4.2 The challenges of biomass handling
  • 4.2.1 Effect of low and variable volumetric energy density
  • 4.2.2 Effect of variation of volumetric energy density on feeder, conveyor and store design
  • 4.2.3 Moisture effects
  • 4.3 Sources and types of biomass, and classifications according to handling properties
  • 4.3.1 Identifying the class to which a biomass belongs
  • 4.3.2 Typical common biomass materials and their classifications
  • 4.3.3 Selection of handling equipment for different biomass materials, and compatibility between different fuels in common systems
  • 4.4 Other considerations for compatibility of different fuels with a handling system
  • 4.4.1 Need for stock rotation and limitation of storage time.
  • 4.4.2 Explosion protection
  • 4.4.3 Special care in relation to large vessels
  • 4.4.4 Dust control, ATEX and DSEAR
  • 4.4.5 Other tests always required to check compatibility
  • 4.5 Conclusions
  • 4.5.1 Choosing the right solutions
  • 4.5.2 The need to 'know your enemy'
  • 4.5.3 Future trends
  • References
  • 5 - Fuel pre-processing, pre-treatment and storage for co-firing of biomass and coal
  • 5.1 Handling and storage of biomass at coal-fired power plants
  • 5.1.1 General considerations
  • 5.1.2 Unloading/discharge
  • 5.1.3 Conveying
  • 5.1.4 Silos/storage
  • 5.1.5 Hardware modifications to convert existing dedicated coal-handling infrastructure
  • 5.2 Biomass pre-treatment technologies
  • 5.2.1 Torrefaction
  • 5.2.2 Steam explosion
  • 5.3 Industrial-scale experience with pre-treated biomass
  • 5.4 Biological degradation
  • 5.5 Pneumatic conveying
  • 5.6 Mechanical durability and storage
  • 5.7 Explosivity
  • 5.7.1 Native dust and dust formation upon handling
  • 5.7.2 Explosivity of raw biomass chips versus torrefied biomass pellets
  • 5.7.3 Moisture content
  • 5.7.4 Minimum explosible concentration (MEC)
  • 5.7.5 Flame-front velocity
  • 5.8 Conclusions and future trends
  • Nomenclature
  • Acknowledgement
  • References
  • 6 - Production of syngas, synfuel, bio-oils, and biogas from coal, biomass, and opportunity fuels
  • 6.1 Introduction
  • 6.2 Gasification
  • 6.2.1 Coal
  • 6.2.1.1 Technologies
  • 6.2.1.2 Product properties
  • 6.2.2 Biomass
  • 6.2.2.1 Technologies
  • 6.2.2.2 Fuel properties
  • 6.2.3 Opportunity fuels
  • 6.2.3.1 Technologies
  • 6.2.3.2 Product properties
  • 6.3 Biogas
  • 6.3.1 Technologies
  • 6.3.2 Fuel analysis
  • 6.3.3 Quality control
  • 6.4 Other methods for producing synthesis gas
  • 6.4.1 Liquefaction
  • 6.4.2 Carbonization
  • 6.5 Syngas conversion to products
  • 6.5.1 Technologies.
  • 6.5.1.1 High-temperature and low-temperature Fischer-Tropsch
  • 6.5.1.2 Steam-methane reforming
  • 6.5.1.3 Water-gas shift
  • 6.5.1.4 Partial oxidation
  • 6.5.2 Product properties
  • 6.6 Current status and future trends
  • 6.6.1 Technical aspects
  • 6.6.2 Environmental aspects
  • References
  • Three - Combustion and conversion technologies
  • 7 - Technology options for large-scale solid-fuel combustion
  • 7.1 Introduction
  • 7.2 Combustion technologies for solid fuels
  • 7.2.1 Grate combustion
  • 7.2.1.1 Basics
  • 7.2.1.2 Modern stokers for biomass
  • 7.2.2 Fluidised-bed combustion
  • 7.2.2.1 Basics
  • 7.2.2.2 Bubbling fluidised-bed (BFB) and circulating fluidised-bed (CFB) technologies
  • 7.2.2.3 Modern fluidised-bed boilers for biomass
  • 7.2.3 Pulverised-fuel combustion
  • 7.2.3.1 General
  • 7.2.3.2 Technology options for co-firing in pulverised-coal plants
  • General
  • Direct co-firing in PC boilers
  • Indirect co-firing technologies
  • Parallel co-firing
  • Converting a PC boiler into a BFB boiler
  • Summary of co-firing options in PC boilers
  • 7.3 Summary
  • References
  • 8 - Plant integrity in solid fuel-flexible power generation
  • 8.1 Introduction
  • 8.2 Potential solid fuels
  • 8.2.1 Coals
  • 8.2.2 Biomass fuels
  • 8.2.3 Waste-derived fuels
  • 8.3 Power plant types, component operating environments and fuel options
  • 8.3.1 Fuel preparation
  • 8.3.2 Superheaters-reheaters-waterwalls-etc.
  • 8.4 Degradation mechanisms and modelling
  • 8.4.1 Deposition
  • 8.4.1.1 Deposit compositions
  • 8.4.2 Oxidation
  • 8.4.3 Fireside corrosion
  • 8.4.3.1 Waterwall corrosion
  • 8.4.3.2 Superheater-reheater corrosion
  • 8.4.4 Erosion-abrasion-wear
  • 8.5 Flexible fuel use
  • 8.5.1 Fuel substitution
  • 8.5.2 Co-firing fuels
  • 8.6 Quantification of damage and protective measures
  • 8.6.1 Component- and material-monitoring methods.
  • 8.6.2 Protective coatings
  • 8.7 Future trends
  • Sources of further information
  • References
  • 9 - Fuel flexible gas production: biomass, coal and bio-solid wastes
  • 9.1 Introduction
  • 9.2 Characteristics of biomass, coal and bio-solid wastes
  • 9.3 Co-gasification of biomass and coal, and co-gasification of biomass and bio-solid wastes
  • 9.3.1 Gasification theories and technologies
  • 9.3.1.1 Downdraft fixed-bed gasifier
  • 9.3.1.2 Updraft fixed-bed gasifier
  • 9.3.1.3 Bubbling fluidized-bed gasifier
  • 9.3.1.4 Circulating fluidized-bed gasifier
  • 9.3.1.5 Dual fluidized-bed gasifier
  • 9.3.1.6 Entrained-flow gasifier
  • 9.3.2 Co-gasification of biomass and coal
  • 9.3.3 Co-gasification of biomass and dried sewage sludge
  • 9.3.4 Issues in the co-gasification of blended solid fuels
  • 9.4 Co-pyrolysis of blended solid fuels
  • 9.4.1 Co-pyrolysis of biomass and coal
  • 9.4.2 Pyrolysis of dried sewage sludge and municipal solid wastes (MSW)
  • 9.5 Concluding remarks
  • References
  • 10 - Technology options and plant design issues for fuel-flexible gas turbines
  • 10.1 Introduction
  • 10.2 Gas turbines in plants
  • 10.3 Fuel-flexible gas turbines
  • 10.4 Gaseous fuels for gas turbine operation
  • 10.5 Gas turbine combustion-related challenges for gaseous fuel flexibility
  • 10.5.1 Auto-ignition delay time
  • 10.5.2 High flame speed
  • 10.5.3 Combustion dynamics and lean blow out
  • 10.5.4 Flame temperature
  • 10.6 Other fuel flexibility impacts on the gas turbine
  • 10.7 Fuel-flexible gas turbine installation
  • 10.8 Gas turbine with external heating integrated in plants
  • 10.8.1 Concentrated solar plant
  • 10.8.2 Pressurized fluidized-bed combustion
  • 10.8.3 Integrated gasification combined cycle
  • 10.9 CO2 capture in gas-turbine integrated plants
  • 10.10 Other integrated cycles
  • References
  • 11 - Fuel flexibility with dual-fuel engines.
  • 11.1 Introduction.