The boundary element method for plate analysis

Boundary Element Method for Plate Analysis offers one of the first systematic and detailed treatments of the application of BEM to plate analysis and design. Aiming to fill in the knowledge gaps left by contributed volumes on the topic and increase the accessibility of the extensive journal lite...

Descripción completa

Detalles Bibliográficos
Otros Autores: Katsikadelis, John T., author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Oxford, England : Academic Press 2014.
Edición:1st ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629633506719
Tabla de Contenidos:
  • Front Cover; The Boundary Element Method for Plate Analysis; Copyright; Dedication; Contents; Foreword; References; Preface; Chapter One: Preliminary Mathematical Knowledge; 1.1. Introduction; 1.2. Gauss-Green theorem; 1.3. Divergence theorem of Gauss; 1.4. Green's second identity; 1.5. Adjoint operator; 1.6. Dirac delta function; 1.7. Calculus of Variations; Euler-Lagrange equation; 1.7.1. Euler-Lagrange equation; 1.7.2. Natural boundary conditions; 1.7.3. Functional depending on a function of two variables; 1.7.4. Examples; Example 1.1; Example 1.2; 1.8 References; Problems
  • Chapter Two: BEM for Plate Bending Analysis2.1. Introduction; 2.2. Thin plate theory; 2.2.1. Definition, model, and loading of the plate; 2.2.2. Thin plates; 2.2.3. Strain-displacement and stress-strain relations for thin plates; 2.2.4. Stress resultants and constitutive equations for thin plates; 2.2.5. Differential equation of the plate; 2.2.6. Boundary conditions; 2.3. Direct BEM for the plate equation; 2.3.1. Rayleigh-Green identity; 2.3.2. The fundamental solution; 2.3.3. Integral representation of the solution; 2.3.4. Boundary integral equations
  • 2.3.4.1. First boundary integral equation2.3.4.2. second boundary integral equation; 2.3.5. Stress resultants; 2.4. Numerical solution of the boundary integral equations; 2.4.1. BEM with constant elements; 2.4.2. Evaluation of the line integrals; 2.4.3. Evaluation of the domain integrals; 2.4.4. Internal Supports; 2.4.5. Evaluation of the corner forces; 2.5. PLBECON Program for solving the plate equation with constant boundary elements; 2.5.1. Main program; INPUTPL Subroutine; GMATRPL Subroutine; HMATRPL Subroutine; HGFBARMATRPL Subroutine; FLOADPL Subroutine; SOLVEQPL Subroutine
  • LWLWNPL SubroutineWINTERPL Subroutine; STRESSPL Subroutine; CORNERPL Subroutine; OUTPUTPL Subroutine; 2.6. Examples; Example 2.1; Example 2.2; Example 2.3; Example 2.4; Example 2.5; 2.7 References; Problems; Chapter Three: BEM for Other Plate Problems; 3.1. Introduction; 3.2. Principle of the analog equation; 3.3. Plate bending under combined transverse and membrane loads; Buckling; 3.3.1. Problem statement; 3.3.2. AEM solution; 3.3.2.1. AEM for the plate equation (3.14); The final step of the ΑΕΜ; 3.3.2.2. Evaluation of the line and domain integrals
  • 3.3.2.3. AEM for the plane stress problem3.3.3. Linear buckling of plates; 3.3.4. Examples; Example 3.1; Example 3.2; Example 3.3; 3.4. Plates on elastic foundation; 3.4.1. Foundation models; 3.4.2. AEM solution; 3.4.3. Examples; Example 3.4; Example 3.5; 3.5. Large deflections of thin plates; 3.5.1. BEM for large deflections of plates; 3.5.2. Derivation of the equations of the nonlinear problem; 3.5.3. The linear problem; 3.5.4. AEM solution; 3.5.5. Examples; Example 3.6; Example 3.7; Example 3.8; 3.6. Plates with variable thickness; 3.6.1. Derivation of the differential equation
  • 3.6.2. AEM solution