A workout in computational finance

A comprehensive introduction to various numerical methods used in computational finance today Quantitative skills are a prerequisite for anyone working in finance or beginning a career in the field, as well as risk managers. A thorough grounding in numerical methods is necessary, as is the ability t...

Descripción completa

Detalles Bibliográficos
Autor principal: Aichinger, Michael, 1979- (-)
Otros Autores: Binder, Andreas, 1964-
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, N.J. : John Wiley & Sons, Inc 2013.
Edición:1st edition
Colección:Wiley finance series
Wiley finance series.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629580806719
Tabla de Contenidos:
  • Intro
  • A Workout in Computational Finance
  • Contents
  • Acknowledgements
  • About the Authors
  • 1 Introduction and Reading Guide
  • 2 Binomial Trees
  • 2.1 Equities and Basic Options
  • 2.2 The One Period Model
  • 2.3 The Multiperiod Binomial Model
  • 2.4 Black-Scholes and Trees
  • 2.5 Strengths and Weaknesses of Binomial Trees
  • 2.5.1 Ease of Implementation
  • 2.5.2 Oscillations
  • 2.5.3 Non-recombining Trees
  • 2.5.4 Exotic Options and Trees
  • 2.5.5 Greeks and Binomial Trees
  • 2.5.6 Grid Adaptivity and Trees
  • 2.6 Conclusion
  • 3 Finite Differences and the Black-Scholes PDE
  • 3.1 A Continuous Time Model for Equity Prices
  • 3.2 Black-Scholes Model: From the SDE to the PDE
  • 3.3 Finite Differences
  • 3.4 Time Discretization
  • 3.5 Stability Considerations
  • 3.6 Finite Differences and the Heat Equation
  • 3.6.1 Numerical Results
  • 3.7 Appendix: Error Analysis
  • 4 Mean Reversion and Trinomial Trees
  • 4.1 Some Fixed Income Terms
  • 4.1.1 Interest Rates and Compounding
  • 4.1.2 Libor Rates and Vanilla Interest Rate Swaps
  • 4.2 Black76 for Caps and Swaptions
  • 4.3 One-Factor Short Rate Models
  • 4.3.1 Prominent Short Rate Models
  • 4.4 The Hull-White Model in More Detail
  • 4.5 Trinomial Trees
  • 5 Upwinding Techniques for Short Rate Models
  • 5.1 Derivation of a PDE for Short Rate Models
  • 5.2 Upwind Schemes
  • 5.2.1 Model Equation
  • 5.3 A Puttable Fixed Rate Bond under the Hull-White One Factor Model
  • 5.3.1 Bond Details
  • 5.3.2 Model Details
  • 5.3.3 Numerical Method
  • 5.3.4 An Algorithm in Pseudocode
  • 5.3.5 Results
  • 6 Boundary, Terminal and Interface Conditions and their Influence
  • 6.1 Terminal Conditions for Equity Options
  • 6.2 Terminal Conditions for Fixed Income Instruments
  • 6.3 Callability and Bermudan Options
  • 6.4 Dividends
  • 6.5 Snowballs and TARNs
  • 6.6 Boundary Conditions.
  • 6.6.1 Double Barrier Options and Dirichlet Boundary Conditions
  • 6.6.2 Artificial Boundary Conditions and the Neumann Case
  • 7 Finite Element Methods
  • 7.1 Introduction
  • 7.1.1 Weighted Residual Methods
  • 7.1.2 Basic Steps
  • 7.2 Grid Generation
  • 7.3 Elements
  • 7.3.1 1D Elements
  • 7.3.2 2D Elements
  • 7.4 The Assembling Process
  • 7.4.1 Element Matrices
  • 7.4.2 Time Discretization
  • 7.4.3 Global Matrices
  • 7.4.4 Boundary Conditions
  • 7.4.5 Application of the Finite Element Method to Convection-Diffusion-Reaction Problems
  • 7.5 A Zero Coupon Bond Under the Two Factor Hull-White Model
  • 7.6 Appendix: Higher Order Elements
  • 7.6.1 3D Elements
  • 7.6.2 Local and Natural Coordinates
  • 8 Solving Systems of Linear Equations
  • 8.1 Direct Methods
  • 8.1.1 Gaussian Elimination
  • 8.1.2 Thomas Algorithm
  • 8.1.3 LU Decomposition
  • 8.1.4 Cholesky Decomposition
  • 8.2 Iterative Solvers
  • 8.2.1 Matrix Decomposition
  • 8.2.2 Krylov Methods
  • 8.2.3 Multigrid Solvers
  • 8.2.4 Preconditioning
  • 9 Monte Carlo Simulation
  • 9.1 The Principles of Monte Carlo Integration
  • 9.2 Pricing Derivatives with Monte Carlo Methods
  • 9.2.1 Discretizing the Stochastic Differential Equation
  • 9.2.2 Pricing Formalism
  • 9.2.3 Valuation of a Steepener under a Two Factor Hull-White Model
  • 9.3 An Introduction to the Libor Market Model
  • 9.4 Random Number Generation
  • 9.4.1 Properties of a Random Number Generator
  • 9.4.2 Uniform Variates
  • 9.4.3 Random Vectors
  • 9.4.4 Recent Developments in Random Number Generation
  • 9.4.5 Transforming Variables
  • 9.4.6 Random Number Generation for Commonly Used Distributions
  • 10 Advanced Monte Carlo Techniques
  • 10.1 Variance Reduction Techniques
  • 10.1.1 Antithetic Variates
  • 10.1.2 Control Variates
  • 10.1.3 Conditioning
  • 10.1.4 Additional Techniques for Variance Reduction
  • 10.2 Quasi Monte Carlo Method.
  • 10.2.1 Low-Discrepancy Sequences
  • 10.2.2 Randomizing QMC
  • 10.3 Brownian Bridge Technique
  • 10.3.1 A Steepener under a Libor Market Model
  • 11 Valuation of Financial Instruments with Embedded American/Bermudan Options within Monte Carlo Frameworks
  • 11.1 Pricing American options using the Longstaff and Schwartz algorithm
  • 11.2 A Modified Least Squares Monte Carlo Algorithm for Bermudan Callable Interest Rate Instruments
  • 11.2.1 Algorithm: Extended LSMC Method for Bermudan Options
  • 11.2.2 Notes on Basis Functions and Regression
  • 11.3 Examples
  • 11.3.1 A Bermudan Callable Floater under Different Short-rate Models
  • 11.3.2 A Bermudan Callable Steepener Swap under a Two Factor Hull-White Model
  • 11.3.3 A Bermudan Callable Steepener Cross Currency Swap in a 3D IR/FX Model Framework
  • 12 Characteristic Function Methods for Option Pricing
  • 12.1 Equity Models
  • 12.1.1 Heston Model
  • 12.1.2 Jump Diffusion Models
  • 12.1.3 Infinite Activity Models
  • 12.1.4 Bates Model
  • 12.2 Fourier Techniques
  • 12.2.1 Fast Fourier Transform Methods
  • 12.2.2 Fourier-Cosine Expansion Methods
  • 13 Numerical Methods for the Solution of PIDEs
  • 13.1 A PIDE for Jump Models
  • 13.2 Numerical Solution of the PIDE
  • 13.2.1 Discretization of the Spatial Domain
  • 13.2.2 Discretization of the Time Domain
  • 13.2.3 A European Option under the Kou Jump Diffusion Model
  • 13.3 Appendix: Numerical Integration via Newton-Cotes Formulae
  • 14 Copulas and the Pitfalls of Correlation
  • 14.1 Correlation
  • 14.1.1 Pearson's ρ
  • 14.1.2 Spearman's ρ
  • 14.1.3 Kendall's ρ
  • 14.1.4 Other Measures
  • 14.2 Copulas
  • 14.2.1 Basic Concepts
  • 14.2.2 Important Copula Functions
  • 14.2.3 Parameter estimation and sampling
  • 14.2.4 Default Probabilities for Credit Derivatives
  • 15 Parameter Calibration and Inverse Problems
  • 15.1 Implied Black-Scholes Volatilities.
  • 15.2 Calibration Problems for Yield Curves
  • 15.3 Reversion Speed and Volatility
  • 15.4 Local Volatility
  • 15.4.1 Dupire's Inversion Formula
  • 15.4.2 Identifying Local Volatility
  • 15.4.3 Results
  • 15.5 Identifying Parameters in Volatility Models
  • 15.5.1 Model Calibration for the FTSE-100
  • 16 Optimization Techniques
  • 16.1 Model Calibration and Optimization
  • 16.1.1 Gradient-Based Algorithms for Nonlinear Least Squares Problems
  • 16.2 Heuristically Inspired Algorithms
  • 16.2.1 Simulated Annealing
  • 16.2.2 Differential Evolution
  • 16.3 A Hybrid Algorithm for Heston Model Calibration
  • 16.4 Portfolio Optimization
  • 17 Risk Management
  • 17.1 Value at Risk and Expected Shortfall
  • 17.1.1 Parametric VaR
  • 17.1.2 Historical VaR
  • 17.1.3 Monte Carlo VaR
  • 17.1.4 Individual and Contribution VaR
  • 17.2 Principal Component Analysis
  • 17.2.1 Principal Component Analysis for Non-scalar Risk Factors
  • 17.2.2 Principal Components for Fast Valuation
  • 17.3 Extreme Value Theory
  • 18 Quantitative Finance on Parallel Architectures
  • 18.1 A Short Introduction to Parallel Computing
  • 18.2 Different Levels of Parallelization
  • 18.3 GPU Programming
  • 18.3.1 CUDA and OpenCL
  • 18.3.2 Memory
  • 18.4 Parallelization of Single Instrument Valuations using (Q)MC
  • 18.5 Parallelization of Hybrid Calibration Algorithms
  • 18.5.1 Implementation Details
  • 18.5.2 Results
  • 19 Building Large Software Systems for the Financial Industry
  • Bibliography
  • Index.