An introduction to LTE LTE, LTE-advanced, SAE, VoLTE and 4G mobile communications

Following on from the successful first edition (March 2012), this book gives a clear explanation of what LTE does and how it works. The content is expressed at a systems level, offering less technically experienced readers the opportunity to grasp the key factors which make LTE the hot topic amongst...

Descripción completa

Detalles Bibliográficos
Autor principal: Cox, Christopher 1965- (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Chichester, West Sussex, United Kingdon ; Hoboken, New Jersey : John Wiley & Sons, Inc [2014]
Edición:Second edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629546706719
Tabla de Contenidos:
  • Preface xxi
  • Acknowledgements xxiii
  • List of Abbreviations xxv
  • 1 Introduction 1
  • 1.1 Architectural Review of UMTS and GSM 1
  • 1.1.1 High-Level Architecture 1
  • 1.1.2 Architecture of the Radio Access Network 2
  • 1.1.3 Architecture of the Core Network 4
  • 1.1.4 Communication Protocols 5
  • 1.2 History of Mobile Telecommunication Systems 6
  • 1.2.1 From 1G to 3G 6
  • 1.2.2 Third Generation Systems 7
  • 1.3 The Need for LTE 8
  • 1.3.1 The Growth of Mobile Data 8
  • 1.3.2 Capacity of a Mobile Telecommunication System 9
  • 1.3.3 Increasing the System Capacity 10
  • 1.3.4 Additional Motivations 11
  • 1.4 From UMTS to LTE 11
  • 1.4.1 High-Level Architecture of LTE 11
  • 1.4.2 Long-Term Evolution 12
  • 1.4.3 System Architecture Evolution 13
  • 1.4.4 LTE Voice Calls 14
  • 1.4.5 The Growth of LTE 15
  • 1.5 From LTE to LTE-Advanced 16
  • 1.5.1 The ITU Requirements for 4G 16
  • 1.5.2 Requirements of LTE-Advanced 16
  • 1.5.3 4G Communication Systems 16
  • 1.5.4 The Meaning of 4G 17
  • 1.6 The 3GPP Specifications for LTE 17
  • References 19
  • 2 System Architecture Evolution 21
  • 2.1 High-Level Architecture of LTE 21
  • 2.2 User Equipment 21
  • 2.2.1 Architecture of the UE 21
  • 2.2.2 UE Capabilities 22
  • 2.3 Evolved UMTS Terrestrial Radio Access Network 23
  • 2.3.1 Architecture of the E-UTRAN 23
  • 2.3.2 Transport Network 24
  • 2.3.3 Small Cells and the Home eNB 25
  • 2.4 Evolved Packet Core 25
  • 2.4.1 Architecture of the EPC 25
  • 2.4.2 Roaming Architecture 27
  • 2.4.3 Network Areas 28
  • 2.4.4 Numbering, Addressing and Identification 28
  • 2.5 Communication Protocols 30
  • 2.5.1 Protocol Model 30
  • 2.5.2 Air Interface Transport Protocols 31
  • 2.5.3 Fixed Network Transport Protocols 31
  • 2.5.4 User Plane Protocols 32
  • 2.5.5 Signalling Protocols 33
  • 2.6 Example Signalling Flows 34
  • 2.6.1 Access Stratum Signalling 34
  • 2.6.2 Non-Access Stratum Signalling 35
  • 2.7 Bearer Management 36
  • 2.7.1 The EPS Bearer 36
  • 2.7.2 Default and Dedicated Bearers 37.
  • 2.7.3 Bearer Implementation Using GTP 38
  • 2.7.4 Bearer Implementation Using GRE and PMIP 39
  • 2.7.5 Signalling Radio Bearers 39
  • 2.8 State Diagrams 40
  • 2.8.1 EPS Mobility Management 40
  • 2.8.2 EPS Connection Management 40
  • 2.8.3 Radio Resource Control 41
  • 2.9 Spectrum Allocation 43
  • References 45
  • 3 Digital Wireless Communications 49
  • 3.1 Radio Transmission and Reception 49
  • 3.1.1 Carrier Signal 49
  • 3.1.2 Modulation Techniques 50
  • 3.1.3 The Modulation Process 51
  • 3.1.4 The Demodulation Process 53
  • 3.1.5 Channel Estimation 55
  • 3.1.6 Bandwidth of the Modulated Signal 55
  • 3.2 Radio Transmission in a Mobile Cellular Network 56
  • 3.2.1 Multiple Access Techniques 56
  • 3.2.2 FDD and TDD Modes 56
  • 3.3 Impairments to the Received Signal 58
  • 3.3.1 Propagation Loss 58
  • 3.3.2 Noise and Interference 58
  • 3.3.3 Multipath and Fading 58
  • 3.3.4 Inter-symbol Interference 60
  • 3.4 Error Management 61
  • 3.4.1 Forward Error Correction 61
  • 3.4.2 Automatic Repeat Request 62
  • 3.4.3 Hybrid ARQ 63
  • References 65
  • 4 Orthogonal Frequency Division Multiple Access 67
  • 4.1 Principles of OFDMA 67
  • 4.1.1 Sub-carriers 67
  • 4.1.2 The OFDM Transmitter 68
  • 4.1.3 The OFDM Receiver 70
  • 4.1.4 The Fast Fourier Transform 72
  • 4.1.5 Block Diagram of OFDMA 72
  • 4.1.6 Details of the Fourier Transform 73
  • 4.2 Benefits and Additional Features of OFDMA 75
  • 4.2.1 Orthogonal Sub-carriers 75
  • 4.2.2 Choice of Sub-carrier Spacing 75
  • 4.2.3 Frequency-Specific Scheduling 77
  • 4.2.4 Reduction of Inter-symbol Interference 78
  • 4.2.5 Cyclic Prefix Insertion 79
  • 4.2.6 Choice of Symbol Duration 80
  • 4.2.7 Fractional Frequency Re-use 81
  • 4.3 Single Carrier Frequency Division Multiple Access 82
  • 4.3.1 Power Variations From OFDMA 82
  • 4.3.2 Block Diagram of SC-FDMA 83
  • References 85
  • 5 Multiple Antenna Techniques 87
  • 5.1 Diversity Processing 87
  • 5.1.1 Receive Diversity 87
  • 5.1.2 Closed Loop Transmit Diversity 88
  • 5.1.3 Open Loop Transmit Diversity 89.
  • 5.2 Spatial Multiplexing 90
  • 5.2.1 Principles of Operation 90
  • 5.2.2 Open Loop Spatial Multiplexing 92
  • 5.2.3 Closed Loop Spatial Multiplexing 94
  • 5.2.4 Matrix Representation 96
  • 5.2.5 Implementation Issues 99
  • 5.2.6 Multiple User MIMO 99
  • 5.3 Beamforming 101
  • 5.3.1 Principles of Operation 101
  • 5.3.2 Beam Steering 102
  • 5.3.3 Downlink Multiple User MIMO Revisited 103
  • References 104
  • 6 Architecture of the LTE Air Interface 105
  • 6.1 Air Interface Protocol Stack 105
  • 6.2 Logical, Transport and Physical Channels 107
  • 6.2.1 Logical Channels 107
  • 6.2.2 Transport Channels 107
  • 6.2.3 Physical Data Channels 108
  • 6.2.4 Control Information 109
  • 6.2.5 Physical Control Channels 110
  • 6.2.6 Physical Signals 111
  • 6.2.7 Information Flows 111
  • 6.3 The Resource Grid 111
  • 6.3.1 Slot Structure 111
  • 6.3.2 Frame Structure 113
  • 6.3.3 Uplink Timing Advance 115
  • 6.3.4 Resource Grid Structure 116
  • 6.3.5 Bandwidth Options 117
  • 6.4 Multiple Antenna Transmission 118
  • 6.4.1 Downlink Antenna Ports 118
  • 6.4.2 Downlink Transmission Modes 119
  • 6.5 Resource Element Mapping 119
  • 6.5.1 Downlink Resource Element Mapping 119
  • 6.5.2 Uplink Resource Element Mapping 121
  • References 123
  • 7 Cell Acquisition 125
  • 7.1 Acquisition Procedure 125
  • 7.2 Synchronization Signals 126
  • 7.2.1 Physical Cell Identity 126
  • 7.2.2 Primary Synchronization Signal 127
  • 7.2.3 Secondary Synchronization Signal 128
  • 7.3 Downlink Reference Signals 128
  • 7.4 Physical Broadcast Channel 129
  • 7.5 Physical Control Format Indicator Channel 130
  • 7.6 System Information 131
  • 7.6.1 Organization of the System Information 131
  • 7.6.2 Transmission and Reception of the System Information 133
  • 7.7 Procedures after Acquisition 133
  • References 134
  • 8 Data Transmission and Reception 135
  • 8.1 Data Transmission Procedures 135
  • 8.1.1 Downlink Transmission and Reception 135
  • 8.1.2 Uplink Transmission and Reception 137
  • 8.1.3 Semi Persistent Scheduling 139.
  • 8.2 Transmission of Scheduling Messages on the PDCCH 139
  • 8.2.1 Downlink Control Information 139
  • 8.2.2 Resource Allocation 140
  • 8.2.3 Example: DCI Format 1 141
  • 8.2.4 Radio Network Temporary Identifiers 142
  • 8.2.5 Transmission and Reception of the PDCCH 143
  • 8.3 Data Transmission on the PDSCH and PUSCH 144
  • 8.3.1 Transport Channel Processing 144
  • 8.3.2 Physical Channel Processing 146
  • 8.4 Transmission of Hybrid ARQ Indicators on the PHICH 148
  • 8.4.1 Introduction 148
  • 8.4.2 Resource Element Mapping of the PHICH 148
  • 8.4.3 Physical Channel Processing of the PHICH 149
  • 8.5 Uplink Control Information 149
  • 8.5.1 Hybrid ARQ Acknowledgements 149
  • 8.5.2 Channel Quality Indicator 150
  • 8.5.3 Rank Indication 151
  • 8.5.4 Precoding Matrix Indicator 151
  • 8.5.5 Channel State Reporting Mechanisms 151
  • 8.5.6 Scheduling Requests 152
  • 8.6 Transmission of Uplink Control Information on the PUCCH 153
  • 8.6.1 PUCCH Formats 153
  • 8.6.2 PUCCH Resources 154
  • 8.6.3 Physical Channel Processing of the PUCCH 155
  • 8.7 Uplink Reference Signals 155
  • 8.7.1 Demodulation Reference Signal 155
  • 8.7.2 Sounding Reference Signal 156
  • 8.8 Power Control 157
  • 8.8.1 Uplink Power Calculation 157
  • 8.8.2 Uplink Power Control Commands 158
  • 8.8.3 Downlink Power Control 159
  • 8.9 Discontinuous Reception 159
  • 8.9.1 Discontinuous Reception and Paging in RRC_IDLE 159
  • 8.9.2 Discontinuous Reception in RRC_CONNECTED 159
  • References 161
  • 9 Random Access 163
  • 9.1 Transmission of Random Access Preambles on the PRACH 163
  • 9.1.1 Resource Element Mapping 163
  • 9.1.2 Preamble Sequence Generation 165
  • 9.1.3 Signal Transmission 165
  • 9.2 Non-Contention-Based Procedure 166
  • 9.3 Contention-Based Procedure 167
  • References 169
  • 10 Air Interface Layer 2 171
  • 10.1 Medium Access Control Protocol 171
  • 10.1.1 Protocol Architecture 171
  • 10.1.2 Timing Advance Commands 173
  • 10.1.3 Buffer Status Reporting 173
  • 10.1.4 Power Headroom Reporting 173
  • 10.1.5 Multiplexing and De-multiplexing 174.
  • 10.1.6 Logical Channel Prioritization 174
  • 10.1.7 Scheduling of Transmissions on the Air Interface 175
  • 10.2 Radio Link Control Protocol 176
  • 10.2.1 Protocol Architecture 176
  • 10.2.2 Transparent Mode 177
  • 10.2.3 Unacknowledged Mode 177
  • 10.2.4 Acknowledged Mode 178
  • 10.3 Packet Data Convergence Protocol 180
  • 10.3.1 Protocol Architecture 180
  • 10.3.2 Header Compression 180
  • 10.3.3 Prevention of Packet Loss during Handover 182
  • References 183
  • 11 Power-On and Power-Off Procedures 185
  • 11.1 Power-On Sequence 185
  • 11.2 Network and Cell Selection 187
  • 11.2.1 Network Selection 187
  • 11.2.2 Closed Subscriber Group Selection 187
  • 11.2.3 Cell Selection 188
  • 11.3 RRC Connection Establishment 189
  • 11.3.1 Basic Procedure 189
  • 11.3.2 Relationship with Other Procedures 190
  • 11.4 Attach Procedure 191
  • 11.4.1 IP Address Allocation 191
  • 11.4.2 Overview of the Attach Procedure 192
  • 11.4.3 Attach Request 192
  • 11.4.4 Identification and Security Procedures 194
  • 11.4.5 Location Update 195
  • 11.4.6 Default Bearer Creation 196
  • 11.4.7 Attach Accept 197
  • 11.4.8 Default Bearer Update 198
  • 11.5 Detach Procedure 199
  • References 200
  • 12 Security Procedures 203
  • 12.1 Network Access Security 203
  • 12.1.1 Security Architecture 203
  • 12.1.2 Key Hierarchy 204
  • 12.1.3 Authentication and Key Agreement 205
  • 12.1.4 Security Activation 207
  • 12.1.5 Ciphering 208
  • 12.1.6 Integrity Protection 209
  • 12.2 Network Domain Security 210
  • 12.2.1 Security Protocols 210
  • 12.2.2 Security in the Evolved Packet Core 210
  • 12.2.3 Security in the Radio Access Network 211
  • References 212
  • 13 Quality of Service, Policy and Charging 215
  • 13.1 Policy and Charging Control 215
  • 13.1.1 Quality of Service Parameters 215
  • 13.1.2 Service Data Flows 217
  • 13.1.3 Charging Parameters 218
  • 13.1.4 Policy and Charging Control Rules 219
  • 13.2 Policy and Charging Control Architecture 219
  • 13.2.1 Basic PCC Architecture 219
  • 13.2.2 Local Breakout Architecture 220.
  • 13.2.3 Architecture Using a PMIP Based S5/S8 220
  • 13.2.4 Software Protocols 221
  • 13.3 Session Management Procedures 222
  • 13.3.1 IP-CAN Session Establishment 222
  • 13.3.2 Mobile Originated SDF Establishment 223
  • 13.3.3 Server Originated SDF Establishment 224
  • 13.3.4 Dedicated Bearer Establishment 225
  • 13.3.5 PDN Connectivity Establishment 226
  • 13.3.6 Other Session Management Procedures 228
  • 13.4 Data Transport in the Evolved Packet Core 228
  • 13.4.1 Packet Handling at the PDN Gateway 228
  • 13.4.2 Data Transport Using GTP 229
  • 13.4.3 Differentiated Services 230
  • 13.4.4 Multiprotocol Label Switching 231
  • 13.4.5 Data Transport Using GRE and PMIP 231
  • 13.5 Charging and Billing 231
  • 13.5.1 High Level Architecture 231
  • 13.5.2 Offline Charging 232
  • 13.5.3 Online Charging 233
  • References 234
  • 14 Mobility Management 237
  • 14.1 Transitions between Mobility Management States 237
  • 14.1.1 S1 Release Procedure 237
  • 14.1.2 Paging Procedure 239
  • 14.1.3 Service Request Procedure 239
  • 14.2 Cell Reselection in RRC_IDLE 241
  • 14.2.1 Objectives 241
  • 14.2.2 Measurement Triggering on the Same LTE Frequency 241
  • 14.2.3 Cell Reselection to the Same LTE Frequency 242
  • 14.2.4 Measurement Triggering on a Different LTE Frequency 243
  • 14.2.5 Cell Reselection to a Different LTE Frequency 244
  • 14.2.6 Fast Moving Mobiles 244
  • 14.2.7 Tracking Area Update Procedure 245
  • 14.2.8 Network Reselection 246
  • 14.3 Measurements in RRC_CONNECTED 247
  • 14.3.1 Objectives 247
  • 14.3.2 Measurement Procedure 247
  • 14.3.3 Measurement Reporting 248
  • 14.3.4 Measurement Gaps 249
  • 14.4 Handover in RRC_CONNECTED 250
  • 14.4.1 X2 Based Handover Procedure 250
  • 14.4.2 Handover Variations 252
  • References 253
  • 15 Inter-operation with UMTS and GSM 255
  • 15.1 System Architecture 255
  • 15.1.1 Architecture of the 2G/3G Packet Switched Domain 255
  • 15.1.2 S3/S4-Based Inter-operation Architecture 257
  • 15.1.3 Gn/Gp-Based Inter-operation Architecture 258.
  • 15.2 Power-On Procedures 259
  • 15.3 Mobility Management in RRC_IDLE 259
  • 15.3.1 Cell Reselection 259
  • 15.3.2 Routing Area Update Procedure 260
  • 15.3.3 Idle Mode Signalling Reduction 262
  • 15.4 Mobility Management in RRC_CONNECTED 262
  • 15.4.1 RRC Connection Release with Redirection 262
  • 15.4.2 Measurement Procedures 264
  • 15.4.3 Optimized Handover 265
  • References 268
  • 16 Inter-operation with Non-3GPP Technologies 271
  • 16.1 Generic System Architecture 271
  • 16.1.1 Network-Based Mobility Architecture 271
  • 16.1.2 Host-Based Mobility Architecture 273
  • 16.1.3 Access Network Discovery and Selection Function 274
  • 16.2 Generic Signalling Procedures 275
  • 16.2.1 Overview of the Attach Procedure 275
  • 16.2.2 Authentication and Key Agreement 276
  • 16.2.3 PDN Connectivity Establishment 278
  • 16.2.4 Radio Access Network Reselection 280
  • 16.3 Inter-Operation with cdma2000 HRPD 280
  • 16.3.1 System Architecture 280
  • 16.3.2 Preregistration with cdma2000 281
  • 16.3.3 Cell Reselection in RRC_IDLE 282
  • 16.3.4 Measurements and Handover in RRC_CONNECTED 283
  • References 286
  • 17 Self-Optimizing Networks 289
  • 17.1 Self-Configuration of an eNB 289
  • 17.1.1 Automatic Configuration of the Physical Cell Identity 289
  • 17.1.2 Automatic Neighbour Relations 290
  • 17.1.3 Random Access Channel Optimization 291
  • 17.2 Inter-Cell Interference Coordination 292
  • 17.3 Mobility Management 292
  • 17.3.1 Mobility Load Balancing 292
  • 17.3.2 Mobility Robustness Optimization 293
  • 17.3.3 Energy Saving 295
  • 17.4 Radio Access Network Information Management 295
  • 17.4.1 Introduction 295
  • 17.4.2 Transfer of System Information 296
  • 17.4.3 Transfer of Self-Optimization Data 297
  • 17.5 Drive Test Minimization 297
  • References 298
  • 18 Enhancements in Release 9 301
  • 18.1 Multimedia Broadcast/Multicast Service 301
  • 18.1.1 Introduction 301
  • 18.1.2 Multicast/Broadcast over a Single Frequency Network 302
  • 18.1.3 Implementation of MBSFN in LTE 302
  • 18.1.4 Architecture of MBMS 304.
  • 18.1.5 Operation of MBMS 305
  • 18.2 Location Services 306
  • 18.2.1 Introduction 306
  • 18.2.2 Positioning Techniques 306
  • 18.2.3 Location Service Architecture 307
  • 18.2.4 Location Service Procedures 308
  • 18.3 Other Enhancements in Release 9 309
  • 18.3.1 Dual Layer Beamforming 309
  • 18.3.2 Commercial Mobile Alert System 310
  • References 310
  • 19 LTE-Advanced and Release 10 313
  • 19.1 Carrier Aggregation 313
  • 19.1.1 Principles of Operation 313
  • 19.1.2 UE Capabilities 314
  • 19.1.3 Scheduling 316
  • 19.1.4 Data Transmission and Reception 316
  • 19.1.5 Uplink and Downlink Feedback 317
  • 19.1.6 Other Physical Layer and MAC Procedures 317
  • 19.1.7 RRC Procedures 317
  • 19.2 Enhanced Downlink MIMO 318
  • 19.2.1 Objectives 318
  • 19.2.2 Downlink Reference Signals 318
  • 19.2.3 Downlink Transmission and Feedback 320
  • 19.3 Enhanced Uplink MIMO 321
  • 19.3.1 Objectives 321
  • 19.3.2 Implementation 321
  • 19.4 Relays 322
  • 19.4.1 Principles of Operation 322
  • 19.4.2 Relaying Architecture 323
  • 19.4.3 Enhancements to the Air Interface 324
  • 19.5 Heterogeneous Networks 324
  • 19.5.1 Introduction 324
  • 19.5.2 Enhanced Inter-Cell Interference Coordination 325
  • 19.5.3 Enhancements to Self-Optimizing Networks 326
  • 19.6 Traffic Offload Techniques 326
  • 19.6.1 Local IP Access 326
  • 19.6.2 Selective IP Traffic Offload 327
  • 19.6.3 Multi-Access PDN Connectivity 327
  • 19.6.4 IP Flow Mobility 329
  • 19.7 Overload Control for Machine-Type Communications 330
  • References 331
  • 20 Releases 11 and 12 333
  • 20.1 Coordinated Multipoint Transmission and Reception 333
  • 20.1.1 Objectives 333
  • 20.1.2 Scenarios 334
  • 20.1.3 CoMP Techniques 335
  • 20.1.4 Standardization 336
  • 20.1.5 Performance 337
  • 20.2 Enhanced Physical Downlink Control Channel 337
  • 20.3 Interference Avoidance for in Device Coexistence 338
  • 20.4 Machine-Type Communications 339
  • 20.4.1 Device Triggering 339
  • 20.4.2 Numbering, Addressing and Identification 340
  • 20.5 Mobile Data Applications 340.
  • 20.6 New Features in Release 12 341
  • 20.6.1 Proximity Services and Device to Device Communications 341
  • 20.6.2 Dynamic Adaptation of the TDD Configuration 342
  • 20.6.3 Enhancements for Machine-Type Communications and Mobile Data 344
  • 20.6.4 Traffic Offloading Enhancements 344
  • 20.7 Release 12 Studies 345
  • 20.7.1 Enhancements to Small Cells and Heterogeneous Networks 345
  • 20.7.2 Elevation Beamforming and Full Dimension MIMO 346
  • References 346
  • 21 Circuit Switched Fallback 349
  • 21.1 Delivery of Voice and Text Messages over LTE 349
  • 21.1.1 The Market for Voice and SMS 349
  • 21.1.2 Third Party Voice over IP 350
  • 21.1.3 The IP Multimedia Subsystem 351
  • 21.1.4 VoLGA 351
  • 21.1.5 Dual Radio Devices 352
  • 21.1.6 Circuit Switched Fallback 353
  • 21.2 System Architecture 353
  • 21.2.1 Architecture of the 2G/3G Circuit Switched Domain 353
  • 21.2.2 Circuit Switched Fallback Architecture 354
  • 21.3 Attach Procedure 355
  • 21.3.1 Combined EPS/IMSI Attach Procedure 355
  • 21.3.2 Voice Domain Preference and UE Usage Setting 356
  • 21.4 Mobility Management 357
  • 21.4.1 Combined Tracking Area/Location Area Update Procedure 357
  • 21.4.2 Alignment of Tracking Areas and Location Areas 357
  • 21.4.3 Cell Reselection to UMTS or GSM 358
  • 21.5 Call Setup 359
  • 21.5.1 Mobile-Originated Call Setup using RRC Connection Release 359
  • 21.5.2 Mobile Originated Call Setup using Handover 361
  • 21.5.3 Signalling Messages in the Circuit Switched Domain 362
  • 21.5.4 Mobile-Terminated Call Setup 363
  • 21.5.5 Returning to LTE 364
  • 21.6 SMS over SGs 365
  • 21.6.1 System Architecture 365
  • 21.6.2 SMS Delivery 365
  • 21.7 Circuit Switched Fallback to cdma2000 1xRTT 366
  • 21.8 Performance of Circuit Switched Fallback 367
  • References 368
  • 22 VoLTE and the IP Multimedia Subsystem 371
  • 22.1 Introduction 371
  • 22.1.1 The IP Multimedia Subsystem 371
  • 22.1.2 VoLTE 372
  • 22.1.3 Rich Communication Services 372
  • 22.2 Hardware Architecture of the IMS 373
  • 22.2.1 High-Level Architecture 373.
  • 22.2.2 Call Session Control Functions 374
  • 22.2.3 Application Servers 375
  • 22.2.4 Home Subscriber Server 375
  • 22.2.5 User Equipment 375
  • 22.2.6 Relationship with LTE 376
  • 22.2.7 Border Control Functions 377
  • 22.2.8 Media Gateway Functions 378
  • 22.2.9 Multimedia Resource Functions 379
  • 22.2.10 Security Architecture 380
  • 22.2.11 Charging Architecture 380
  • 22.3 Signalling Protocols 381
  • 22.3.1 Session Initiation Protocol 381
  • 22.3.2 Session Description Protocol 382
  • 22.3.3 Other Signalling Protocols 382
  • 22.4 Service Provision in the IMS 382
  • 22.4.1 Service Profiles 382
  • 22.4.2 Media Feature Tags 383
  • 22.4.3 The Multimedia Telephony Service for IMS 383
  • 22.5 VoLTE Registration Procedure 384
  • 22.5.1 Introduction 384
  • 22.5.2 LTE Procedures 384
  • 22.5.3 Contents of the REGISTER Request 385
  • 22.5.4 IMS Registration Procedure 387
  • 22.5.5 Routing of SIP Requests and Responses 388
  • 22.5.6 Third-Party Registration with Application Servers 389
  • 22.5.7 Subscription for Network-Initiated Deregistration 389
  • 22.6 Call Setup and Release 390
  • 22.6.1 Contents of the INVITE Request 390
  • 22.6.2 Initial INVITE Request and Response 391
  • 22.6.3 Acceptance of the Initial INVITE 393
  • 22.6.4 Establishment of a Call to a Circuit Switched Network 396
  • 22.6.5 Call Release 396
  • 22.7 Access Domain Selection 397
  • 22.7.1 Mobile-Originated Calls 397
  • 22.7.2 Mobile-Terminated Calls 398
  • 22.8 Single Radio Voice Call Continuity 398
  • 22.8.1 Introduction 398
  • 22.8.2 SRVCC Architecture 399
  • 22.8.3 Attach, Registration and Call Setup Procedures 400
  • 22.8.4 Handover Preparation 400
  • 22.8.5 Updating the Remote Leg 401
  • 22.8.6 Releasing the Source Leg 403
  • 22.8.7 Handover Execution and Completion 403
  • 22.8.8 Evolution of SRVCC 404
  • 22.9 IMS Centralized Services 405
  • 22.10 IMS Emergency Calls 406
  • 22.10.1 Emergency Call Architecture 406
  • 22.10.2 Emergency Call Setup Procedure 407
  • 22.11 Delivery of SMS Messages over the IMS 408.
  • 22.11.1 SMS Architecture 408
  • 22.11.2 Access Domain Selection 409
  • References 410
  • 23 Performance of LTE and LTE-Advanced 413
  • 23.1 Peak Data Rates of LTE and LTE-Advanced 413
  • 23.1.1 Increase of the Peak Data Rate 413
  • 23.1.2 Limitations on the Peak Data Rate 415
  • 23.2 Coverage of an LTE Cell 416
  • 23.2.1 Uplink Link Budget 416
  • 23.2.2 Downlink Link Budget 418
  • 23.2.3 Propagation Modelling 419
  • 23.2.4 Coverage Estimation 420
  • 23.3 Capacity of an LTE Cell 421
  • 23.3.1 Capacity Estimation 421
  • 23.3.2 Cell Capacity Simulations 422
  • 23.4 Performance of Voice over IP 424
  • 23.4.1 AMR Codec Modes 424
  • 23.4.2 Transmission of AMR Frames on the Air Interface 425
  • 23.4.3 Transmission of AMR Frames in the Fixed Network 426
  • References 427
  • Bibliography 429
  • Index 431.