Fundamentals of applied probability and random processes
e it ideal for the classroom or for self-study. The book: demonstrates concepts with more than 100 illustrations, including 2 dozen new drawings; expands readers' understanding of disruptive statistics in a new chapter (chapter 8); provides a new chapter on Introduction to Random Processes with...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
San Diego, California ; Waltham, [Massachusetts] :
Academic Press
2014
|
Edición: | Second edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629528706719 |
Tabla de Contenidos:
- Front Cover
- Fundamentals of Applied Probability and Random Processes
- Copyright
- Contents
- Acknowledgment
- Preface to the Second Edition
- Preface to First Edition
- Chapter 1: Basic Probability Concepts
- 1.1. Introduction
- 1.2. Sample Space and Events
- 1.3. Definitions of Probability
- 1.3.1. Axiomatic Definition
- 1.3.2. Relative-Frequency Definition
- 1.3.3. Classical Definition
- 1.4. Applications of Probability
- 1.4.1. Information Theory
- 1.4.2. Reliability Engineering
- 1.4.3. Quality Control
- 1.4.4. Channel Noise
- 1.4.5. System Simulation
- 1.5. Elementary Set Theory
- 1.5.1. Set Operations
- 1.5.2. Number of Subsets of a Set
- 1.5.3. Venn Diagram
- 1.5.4. Set Identities
- 1.5.5. Duality Principle
- 1.6. Properties of Probability
- 1.7. Conditional Probability
- 1.7.1. Total Probability and the Bayes Theorem
- 1.7.2. Tree Diagram
- 1.8. Independent Events
- 1.9. Combined Experiments
- 1.10. Basic Combinatorial Analysis
- 1.10.1. Permutations
- 1.10.2. Circular Arrangement
- 1.10.3. Applications of Permutations in Probability
- 1.10.4. Combinations
- 1.10.5. The Binomial Theorem
- 1.10.6. Stirling's Formula
- 1.10.7. The Fundamental Counting Rule
- 1.10.8. Applications of Combinations in Probability
- 1.11. Reliability Applications
- 1.12. Chapter Summary
- 1.13. Problems
- Section 1.2. Sample Space and Events
- Section 1.3. Definitions of Probability
- Section 1.5. Elementary Set Theory
- Section 1.6. Properties of Probability
- Section 1.7. Conditional Probability
- Section 1.8. Independent Events
- Section 1.10. Combinatorial Analysis
- Section 1.11. Reliability Applications
- Chapter 2: Random Variables
- 2.1. Introduction
- 2.2. Definition of a Random Variable
- 2.3. Events Defined by Random Variables
- 2.4. Distribution Functions
- 2.5. Discrete Random Variables.
- 2.5.1. Obtaining the PMF from the CDF
- 2.6. Continuous Random Variables
- 2.7. Chapter Summary
- 2.8. Problems
- Section 2.4. Distribution Functions
- Section 2.5. Discrete Random Variables
- Section 2.6. Continuous Random Variables
- Chapter 3: Moments of Random Variables
- 3.1. Introduction
- 3.2. Expectation
- 3.3. Expectation of Nonnegative Random Variables
- 3.4. Moments of Random Variables and the Variance
- 3.5. Conditional Expectations
- 3.6. The Markov Inequality
- 3.7. The Chebyshev Inequality
- 3.8. Chapter Summary
- 3.9. Problems
- Section 3.2. Expected Values
- Section 3.4. Moments of Random Variables and the Variance
- Section 3.5. Conditional Expectations
- Sections 3.6 and 3.7. Markov and Chebyshev Inequalities
- Chapter 4: Special Probability Distributions
- 4.1. Introduction
- 4.2. The Bernoulli Trial and Bernoulli Distribution
- 4.3. Binomial Distribution
- 4.4. Geometric Distribution
- 4.4.1. CDF of the Geometric Distribution
- 4.4.2. Modified Geometric Distribution
- 4.4.3. ``Forgetfulness´´ Property of the Geometric Distribution
- 4.5. Pascal Distribution
- 4.5.1. Distinction Between Binomial and Pascal Distributions
- 4.6. Hypergeometric Distribution
- 4.7. Poisson Distribution
- 4.7.1. Poisson Approximation of the Binomial Distribution
- 4.8. Exponential Distribution
- 4.8.1. ``Forgetfulness´´ Property of the Exponential Distribution
- 4.8.2. Relationship between the Exponential and Poisson Distributions
- 4.9. Erlang Distribution
- 4.10. Uniform Distribution
- 4.10.1. The Discrete Uniform Distribution
- 4.11. Normal Distribution
- 4.11.1. Normal Approximation of the Binomial Distribution
- 4.11.2. The Error Function
- 4.11.3. The Q-Function
- 4.12. The Hazard Function
- 4.13. Truncated Probability Distributions
- 4.13.1. Truncated Binomial Distribution.
- 4.13.2. Truncated Geometric Distribution
- 4.13.3. Truncated Poisson Distribution
- 4.13.4. Truncated Normal Distribution
- 4.14. Chapter Summary
- 4.15. Problems
- Section 4.3. Binomial Distribution
- Section 4.4. Geometric Distribution
- Section 4.5. Pascal Distribution
- Section 4.6. Hypergeometric Distribution
- Section 4.7. Poisson Distribution
- Section 4.8. Exponential Distribution
- Section 4.9. Erlang Distribution
- Section 4.10. Uniform Distribution
- Section 4.11. Normal Distribution
- Chapter 5: Multiple Random Variables
- 5.1. Introduction
- 5.2. Joint CDFs of Bivariate Random Variables
- 5.2.1. Properties of the Joint CDF
- 5.3. Discrete Bivariate Random Variables
- 5.4. Continuous Bivariate Random Variables
- 5.5. Determining Probabilities from a Joint CDF
- 5.6. Conditional Distributions
- 5.6.1. Conditional PMF for Discrete Bivariate Random Variables
- 5.6.2. Conditional PDF for Continuous Bivariate Random Variables
- 5.6.3. Conditional Means and Variances
- 5.6.4. Simple Rule for Independence
- 5.7. Covariance and Correlation Coefficient
- 5.8. Multivariate Random Variables
- 5.9. Multinomial Distributions
- 5.10. Chapter Summary
- 5.11. Problems
- Section 5.3. Discrete Bivariate Random Variables
- Section 5.4. Continuous Bivariate Random Variables
- Section 5.6. Conditional Distributions
- Section 5.7. Covariance and Correlation Coefficient
- Section 5.9. Multinomial Distributions
- Chapter 6: Functions of Random Variables
- 6.1. Introduction
- 6.2. Functions of One Random Variable
- 6.2.1. Linear Functions
- 6.2.2. Power Functions
- 6.3. Expectation of a Function of One Random Variable
- 6.3.1. Moments of a Linear Function
- 6.3.2. Expected Value of a Conditional Expectation
- 6.4. Sums of Independent Random Variables
- 6.4.1. Moments of the Sum of Random Variables.
- 6.4.2. Sum of Discrete Random Variables
- 6.4.3. Sum of Independent Binomial Random Variables
- 6.4.4. Sum of Independent Poisson Random Variables
- 6.4.5. The Spare Parts Problem
- 6.5. Minimum of Two Independent Random Variables
- 6.6. Maximum of Two Independent Random Variables
- 6.7. Comparison of the Interconnection Models
- 6.8. Two Functions of Two Random Variables
- 6.8.1. Application of the Transformation Method
- 6.9. Laws of Large Numbers
- 6.10. The Central Limit Theorem
- 6.11. Order Statistics
- 6.12. Chapter Summary
- 6.13. Problems
- Section 6.2. Functions of One Random Variable
- Section 6.4. Sums of Random Variables
- Sections 6.4 and 6.5. Maximum and Minimum of Independent Random Variables
- Section 6.8. Two Functions of Two Random Variables
- Section 6.10. The Central Limit Theorem
- Section 6.11. Order Statistics
- Chapter 7: Transform Methods
- 7.1. Introduction
- 7.2. The Characteristic Function
- 7.2.1. Moment-Generating Property of the Characteristic Function
- 7.2.2. Sums of Independent Random Variables
- 7.2.3. The Characteristic Functions of Some Well-Known Distributions
- 7.3. The s-Transform
- 7.3.1. Moment-Generating Property of the s-Transform
- 7.3.2. The s-Transform of the PDF of the Sum of Independent Random Variables
- 7.3.3. The s-Transforms of Some Well-Known PDFs
- 7.4. The z-Transform
- 7.4.1. Moment-Generating Property of the z-Transform
- 7.4.2. The z-Transform of the PMF of the Sum of Independent Random Variables
- 7.4.3. The z-Transform of Some Well-Known PMFs
- 7.5. Random Sum of Random Variables
- 7.6. Chapter Summary
- 7.7. Problems
- Section 7.2. Characteristic Functions
- Section 7.3. s-Transforms
- Section 7.4. z-Transforms
- Section 7.5. Random Sum of Random Variables
- Chapter 8: Introduction to Descriptive Statistics
- 8.1. Introduction.
- 8.2. Descriptive Statistics
- 8.3. Measures of Central Tendency
- 8.3.1. Mean
- 8.3.2. Median
- 8.3.3. Mode
- 8.4. Measures of Dispersion
- 8.4.1. Range
- 8.4.2. Quartiles and Percentiles
- 8.4.3. Variance
- 8.4.4. Standard Deviation
- 8.5. Graphical and Tabular Displays
- 8.5.1. Dot Plots
- 8.5.2. Frequency Distribution
- 8.5.3. Histograms
- 8.5.4. Frequency Polygons
- 8.5.5. Bar Graphs
- 8.5.6. Pie Chart
- 8.5.7. Box and Whiskers Plot
- 8.6. Shape of Frequency Distributions: Skewness
- 8.7. Shape of Frequency Distributions: Peakedness
- 8.8. Chapter Summary
- 8.9. Problems
- Section 8.3. Measures of Central Tendency
- Section 8.4. Measures of Dispersion
- Section 8.6. Graphical Displays
- Section 8.7. Shape of Frequency Distribution
- Chapter 9: Introduction to Inferential Statistics
- 9.1. Introduction
- 9.2. Sampling Theory
- 9.2.1. The Sample Mean
- 9.2.2. The Sample Variance
- 9.2.3. Sampling Distributions
- 9.3. Estimation Theory
- 9.3.1. Point Estimate, Interval Estimate, and Confidence Interval
- 9.3.2. Maximum Likelihood Estimation
- 9.3.3. Minimum Mean Squared Error Estimation
- 9.4. Hypothesis Testing
- 9.4.1. Hypothesis Test Procedure
- 9.4.2. Type I and Type II Errors
- 9.4.3. One-Tailed and Two-Tailed Tests
- 9.5. Regression Analysis
- 9.6. Chapter Summary
- 9.7. Problems
- Section 9.2. Sampling Theory
- Section 9.3. Estimation Theory
- Section 9.4. Hypothesis Testing
- Section 9.5. Regression Analysis
- Chapter 10: Introduction to Random Processes
- 10.1. Introduction
- 10.2. Classification of Random Processes
- 10.3. Characterizing a Random Process
- 10.3.1. Mean and Autocorrelation Function
- 10.3.2. The Autocovariance Function
- 10.4. Crosscorrelation and Crosscovariance Functions
- 10.4.1. Review of Some Trigonometric Identities
- 10.5. Stationary Random Processes.
- 10.5.1. Strict-Sense Stationary Processes.