Fundamentals of applied probability and random processes

e it ideal for the classroom or for self-study. The book: demonstrates concepts with more than 100 illustrations, including 2 dozen new drawings; expands readers' understanding of disruptive statistics in a new chapter (chapter 8); provides a new chapter on Introduction to Random Processes with...

Descripción completa

Detalles Bibliográficos
Otros Autores: Ibe, Oliver C. 1947- author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: San Diego, California ; Waltham, [Massachusetts] : Academic Press 2014
Edición:Second edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629528706719
Tabla de Contenidos:
  • Front Cover
  • Fundamentals of Applied Probability and Random Processes
  • Copyright
  • Contents
  • Acknowledgment
  • Preface to the Second Edition
  • Preface to First Edition
  • Chapter 1: Basic Probability Concepts
  • 1.1. Introduction
  • 1.2. Sample Space and Events
  • 1.3. Definitions of Probability
  • 1.3.1. Axiomatic Definition
  • 1.3.2. Relative-Frequency Definition
  • 1.3.3. Classical Definition
  • 1.4. Applications of Probability
  • 1.4.1. Information Theory
  • 1.4.2. Reliability Engineering
  • 1.4.3. Quality Control
  • 1.4.4. Channel Noise
  • 1.4.5. System Simulation
  • 1.5. Elementary Set Theory
  • 1.5.1. Set Operations
  • 1.5.2. Number of Subsets of a Set
  • 1.5.3. Venn Diagram
  • 1.5.4. Set Identities
  • 1.5.5. Duality Principle
  • 1.6. Properties of Probability
  • 1.7. Conditional Probability
  • 1.7.1. Total Probability and the Bayes Theorem
  • 1.7.2. Tree Diagram
  • 1.8. Independent Events
  • 1.9. Combined Experiments
  • 1.10. Basic Combinatorial Analysis
  • 1.10.1. Permutations
  • 1.10.2. Circular Arrangement
  • 1.10.3. Applications of Permutations in Probability
  • 1.10.4. Combinations
  • 1.10.5. The Binomial Theorem
  • 1.10.6. Stirling's Formula
  • 1.10.7. The Fundamental Counting Rule
  • 1.10.8. Applications of Combinations in Probability
  • 1.11. Reliability Applications
  • 1.12. Chapter Summary
  • 1.13. Problems
  • Section 1.2. Sample Space and Events
  • Section 1.3. Definitions of Probability
  • Section 1.5. Elementary Set Theory
  • Section 1.6. Properties of Probability
  • Section 1.7. Conditional Probability
  • Section 1.8. Independent Events
  • Section 1.10. Combinatorial Analysis
  • Section 1.11. Reliability Applications
  • Chapter 2: Random Variables
  • 2.1. Introduction
  • 2.2. Definition of a Random Variable
  • 2.3. Events Defined by Random Variables
  • 2.4. Distribution Functions
  • 2.5. Discrete Random Variables.
  • 2.5.1. Obtaining the PMF from the CDF
  • 2.6. Continuous Random Variables
  • 2.7. Chapter Summary
  • 2.8. Problems
  • Section 2.4. Distribution Functions
  • Section 2.5. Discrete Random Variables
  • Section 2.6. Continuous Random Variables
  • Chapter 3: Moments of Random Variables
  • 3.1. Introduction
  • 3.2. Expectation
  • 3.3. Expectation of Nonnegative Random Variables
  • 3.4. Moments of Random Variables and the Variance
  • 3.5. Conditional Expectations
  • 3.6. The Markov Inequality
  • 3.7. The Chebyshev Inequality
  • 3.8. Chapter Summary
  • 3.9. Problems
  • Section 3.2. Expected Values
  • Section 3.4. Moments of Random Variables and the Variance
  • Section 3.5. Conditional Expectations
  • Sections 3.6 and 3.7. Markov and Chebyshev Inequalities
  • Chapter 4: Special Probability Distributions
  • 4.1. Introduction
  • 4.2. The Bernoulli Trial and Bernoulli Distribution
  • 4.3. Binomial Distribution
  • 4.4. Geometric Distribution
  • 4.4.1. CDF of the Geometric Distribution
  • 4.4.2. Modified Geometric Distribution
  • 4.4.3. ``Forgetfulness´´ Property of the Geometric Distribution
  • 4.5. Pascal Distribution
  • 4.5.1. Distinction Between Binomial and Pascal Distributions
  • 4.6. Hypergeometric Distribution
  • 4.7. Poisson Distribution
  • 4.7.1. Poisson Approximation of the Binomial Distribution
  • 4.8. Exponential Distribution
  • 4.8.1. ``Forgetfulness´´ Property of the Exponential Distribution
  • 4.8.2. Relationship between the Exponential and Poisson Distributions
  • 4.9. Erlang Distribution
  • 4.10. Uniform Distribution
  • 4.10.1. The Discrete Uniform Distribution
  • 4.11. Normal Distribution
  • 4.11.1. Normal Approximation of the Binomial Distribution
  • 4.11.2. The Error Function
  • 4.11.3. The Q-Function
  • 4.12. The Hazard Function
  • 4.13. Truncated Probability Distributions
  • 4.13.1. Truncated Binomial Distribution.
  • 4.13.2. Truncated Geometric Distribution
  • 4.13.3. Truncated Poisson Distribution
  • 4.13.4. Truncated Normal Distribution
  • 4.14. Chapter Summary
  • 4.15. Problems
  • Section 4.3. Binomial Distribution
  • Section 4.4. Geometric Distribution
  • Section 4.5. Pascal Distribution
  • Section 4.6. Hypergeometric Distribution
  • Section 4.7. Poisson Distribution
  • Section 4.8. Exponential Distribution
  • Section 4.9. Erlang Distribution
  • Section 4.10. Uniform Distribution
  • Section 4.11. Normal Distribution
  • Chapter 5: Multiple Random Variables
  • 5.1. Introduction
  • 5.2. Joint CDFs of Bivariate Random Variables
  • 5.2.1. Properties of the Joint CDF
  • 5.3. Discrete Bivariate Random Variables
  • 5.4. Continuous Bivariate Random Variables
  • 5.5. Determining Probabilities from a Joint CDF
  • 5.6. Conditional Distributions
  • 5.6.1. Conditional PMF for Discrete Bivariate Random Variables
  • 5.6.2. Conditional PDF for Continuous Bivariate Random Variables
  • 5.6.3. Conditional Means and Variances
  • 5.6.4. Simple Rule for Independence
  • 5.7. Covariance and Correlation Coefficient
  • 5.8. Multivariate Random Variables
  • 5.9. Multinomial Distributions
  • 5.10. Chapter Summary
  • 5.11. Problems
  • Section 5.3. Discrete Bivariate Random Variables
  • Section 5.4. Continuous Bivariate Random Variables
  • Section 5.6. Conditional Distributions
  • Section 5.7. Covariance and Correlation Coefficient
  • Section 5.9. Multinomial Distributions
  • Chapter 6: Functions of Random Variables
  • 6.1. Introduction
  • 6.2. Functions of One Random Variable
  • 6.2.1. Linear Functions
  • 6.2.2. Power Functions
  • 6.3. Expectation of a Function of One Random Variable
  • 6.3.1. Moments of a Linear Function
  • 6.3.2. Expected Value of a Conditional Expectation
  • 6.4. Sums of Independent Random Variables
  • 6.4.1. Moments of the Sum of Random Variables.
  • 6.4.2. Sum of Discrete Random Variables
  • 6.4.3. Sum of Independent Binomial Random Variables
  • 6.4.4. Sum of Independent Poisson Random Variables
  • 6.4.5. The Spare Parts Problem
  • 6.5. Minimum of Two Independent Random Variables
  • 6.6. Maximum of Two Independent Random Variables
  • 6.7. Comparison of the Interconnection Models
  • 6.8. Two Functions of Two Random Variables
  • 6.8.1. Application of the Transformation Method
  • 6.9. Laws of Large Numbers
  • 6.10. The Central Limit Theorem
  • 6.11. Order Statistics
  • 6.12. Chapter Summary
  • 6.13. Problems
  • Section 6.2. Functions of One Random Variable
  • Section 6.4. Sums of Random Variables
  • Sections 6.4 and 6.5. Maximum and Minimum of Independent Random Variables
  • Section 6.8. Two Functions of Two Random Variables
  • Section 6.10. The Central Limit Theorem
  • Section 6.11. Order Statistics
  • Chapter 7: Transform Methods
  • 7.1. Introduction
  • 7.2. The Characteristic Function
  • 7.2.1. Moment-Generating Property of the Characteristic Function
  • 7.2.2. Sums of Independent Random Variables
  • 7.2.3. The Characteristic Functions of Some Well-Known Distributions
  • 7.3. The s-Transform
  • 7.3.1. Moment-Generating Property of the s-Transform
  • 7.3.2. The s-Transform of the PDF of the Sum of Independent Random Variables
  • 7.3.3. The s-Transforms of Some Well-Known PDFs
  • 7.4. The z-Transform
  • 7.4.1. Moment-Generating Property of the z-Transform
  • 7.4.2. The z-Transform of the PMF of the Sum of Independent Random Variables
  • 7.4.3. The z-Transform of Some Well-Known PMFs
  • 7.5. Random Sum of Random Variables
  • 7.6. Chapter Summary
  • 7.7. Problems
  • Section 7.2. Characteristic Functions
  • Section 7.3. s-Transforms
  • Section 7.4. z-Transforms
  • Section 7.5. Random Sum of Random Variables
  • Chapter 8: Introduction to Descriptive Statistics
  • 8.1. Introduction.
  • 8.2. Descriptive Statistics
  • 8.3. Measures of Central Tendency
  • 8.3.1. Mean
  • 8.3.2. Median
  • 8.3.3. Mode
  • 8.4. Measures of Dispersion
  • 8.4.1. Range
  • 8.4.2. Quartiles and Percentiles
  • 8.4.3. Variance
  • 8.4.4. Standard Deviation
  • 8.5. Graphical and Tabular Displays
  • 8.5.1. Dot Plots
  • 8.5.2. Frequency Distribution
  • 8.5.3. Histograms
  • 8.5.4. Frequency Polygons
  • 8.5.5. Bar Graphs
  • 8.5.6. Pie Chart
  • 8.5.7. Box and Whiskers Plot
  • 8.6. Shape of Frequency Distributions: Skewness
  • 8.7. Shape of Frequency Distributions: Peakedness
  • 8.8. Chapter Summary
  • 8.9. Problems
  • Section 8.3. Measures of Central Tendency
  • Section 8.4. Measures of Dispersion
  • Section 8.6. Graphical Displays
  • Section 8.7. Shape of Frequency Distribution
  • Chapter 9: Introduction to Inferential Statistics
  • 9.1. Introduction
  • 9.2. Sampling Theory
  • 9.2.1. The Sample Mean
  • 9.2.2. The Sample Variance
  • 9.2.3. Sampling Distributions
  • 9.3. Estimation Theory
  • 9.3.1. Point Estimate, Interval Estimate, and Confidence Interval
  • 9.3.2. Maximum Likelihood Estimation
  • 9.3.3. Minimum Mean Squared Error Estimation
  • 9.4. Hypothesis Testing
  • 9.4.1. Hypothesis Test Procedure
  • 9.4.2. Type I and Type II Errors
  • 9.4.3. One-Tailed and Two-Tailed Tests
  • 9.5. Regression Analysis
  • 9.6. Chapter Summary
  • 9.7. Problems
  • Section 9.2. Sampling Theory
  • Section 9.3. Estimation Theory
  • Section 9.4. Hypothesis Testing
  • Section 9.5. Regression Analysis
  • Chapter 10: Introduction to Random Processes
  • 10.1. Introduction
  • 10.2. Classification of Random Processes
  • 10.3. Characterizing a Random Process
  • 10.3.1. Mean and Autocorrelation Function
  • 10.3.2. The Autocovariance Function
  • 10.4. Crosscorrelation and Crosscovariance Functions
  • 10.4.1. Review of Some Trigonometric Identities
  • 10.5. Stationary Random Processes.
  • 10.5.1. Strict-Sense Stationary Processes.