Nature-inspired optimization algorithms
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-cho...
Autor principal: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
London, [England] ; Waltham, [Massachusetts] :
Elsevier
2014.
|
Edición: | First edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629480406719 |
Tabla de Contenidos:
- Half Title; Title Page; Copyright; Contents; Preface; 1 Introduction to Algorithms; 1.1 What is an Algorithm?; 1.2 Newton's Method; 1.3 Optimization; 1.3.1 Gradient-Based Algorithms; 1.3.2 Hill Climbing with Random Restart; 1.4 Search for Optimality; 1.5 No-Free-Lunch Theorems; 1.5.1 NFL Theorems; 1.5.2 Choice of Algorithms; 1.6 Nature-Inspired Metaheuristics; 1.7 A Brief History of Metaheuristics; References; 2 Analysis of Algorithms; 2.1 Introduction; 2.2 Analysis of Optimization Algorithms; 2.2.1 Algorithm as an Iterative Process; 2.2.2 An Ideal Algorithm?; 2.2.3 A Self-Organization System
- 2.2.4 Exploration and Exploitation2.2.5 Evolutionary Operators; 2.3 Nature-Inspired Algorithms; 2.3.1 Simulated Annealing; 2.3.2 Genetic Algorithms; 2.3.3 Differential Evolution; 2.3.4 Ant and Bee Algorithms; 2.3.5 Particle Swarm Optimization; 2.3.6 The Firefly Algorithm; 2.3.7 Cuckoo Search; 2.3.8 The Bat Algorithm; 2.3.9 Harmony Search; 2.3.10 The Flower Algorithm; 2.3.11 Other Algorithms; 2.4 Parameter Tuning and Parameter Control; 2.4.1 Parameter Tuning; 2.4.2 Hyperoptimization; 2.4.3 Multiobjective View; 2.4.4 Parameter Control; 2.5 Discussions; 2.6 Summary; References
- 3 Random Walks and Optimization3.1 Random Variables; 3.2 Isotropic Random Walks; 3.3 Lévy Distribution and Lévy Flights; 3.4 Optimization as Markov Chains; 3.4.1 Markov Chain; 3.4.2 Optimization as a Markov Chain; 3.5 Step Sizes and Search Efficiency; 3.5.1 Step Sizes, Stopping Criteria, and Efficiency; 3.5.2 Why Lévy Flights are More Efficient; 3.6 Modality and Intermittent Search Strategy; 3.7 Importance of Randomization; 3.7.1 Ways to Carry Out Random Walks; 3.7.2 Importance of Initialization; 3.7.3 Importance Sampling; 3.7.4 Low-Discrepancy Sequences; 3.8 Eagle Strategy
- 3.8.1 Basic Ideas of Eagle Strategy3.8.2 Why Eagle Strategy is So Efficient; References; 4 Simulated Annealing; 4.1 Annealing and Boltzmann Distribution; 4.2 Parameters; 4.3 SA Algorithm; 4.4 Unconstrained Optimization; 4.5 Basic Convergence Properties; 4.6 SA Behavior in Practice; 4.7 Stochastic Tunneling; References; 5 Genetic Algorithms; 5.1 Introduction; 5.2 Genetic Algorithms; 5.3 Role of Genetic Operators; 5.4 Choice of Parameters; 5.5 GA Variants; 5.6 Schema Theorem; 5.7 Convergence Analysis; References; 6 Differential Evolution; 6.1 Introduction; 6.2 Differential Evolution
- 6.3 Variants6.4 Choice of Parameters; 6.5 Convergence Analysis; 6.6 Implementation; References; 7 Particle Swarm Optimization; 7.1 Swarm Intelligence; 7.2 PSO Algorithm; 7.3 Accelerated PSO; 7.4 Implementation; 7.5 Convergence Analysis; 7.5.1 Dynamical System; 7.5.2 Markov Chain Approach; 7.6 Binary PSO; References; 8 Firefly Algorithms; 8.1 The Firefly Algorithm; 8.1.1 Firefly Behavior; 8.1.2 Standard Firefly Algorithm; 8.1.3 Variations of Light Intensity and Attractiveness; 8.1.4 Controlling Randomization; 8.2 Algorithm Analysis; 8.2.1 Scalings and Limiting Cases
- 8.2.2 Attraction and Diffusion