Nature-inspired optimization algorithms

Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-cho...

Descripción completa

Detalles Bibliográficos
Autor principal: Yang, Xin-She (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: London, [England] ; Waltham, [Massachusetts] : Elsevier 2014.
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629480406719
Descripción
Sumario:Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, paramete
Notas:Description based upon print version of record.
Descripción Física:1 online resource (277 p.)
Bibliografía:Includes bibliographical references.
ISBN:9780124167452