Nature-inspired optimization algorithms
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-cho...
Autor principal: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
London, [England] ; Waltham, [Massachusetts] :
Elsevier
2014.
|
Edición: | First edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629480406719 |
Sumario: | Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, paramete |
---|---|
Notas: | Description based upon print version of record. |
Descripción Física: | 1 online resource (277 p.) |
Bibliografía: | Includes bibliographical references. |
ISBN: | 9780124167452 |