Silicon photonics fundamentals and devices

The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such a...

Descripción completa

Detalles Bibliográficos
Autor principal: Deen, M. Jamal (-)
Otros Autores: Basu, P. K. (Prasanta Kumar)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Chichester, West Sussex, UK ; Hoboken, N.J. : Wiley 2012.
Edición:1st edition
Colección:Wiley Series in Materials for Electronic & Optoelectronic Applications
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629331106719
Tabla de Contenidos:
  • Silicon Photonics: Fundamentals and Devices; Contents; Series Preface; Preface; 1 Introduction to Silicon Photonics; 1.1 Introduction; 1.2 VLSI: Past, Present, and Future Roadmap; 1.3 The Interconnect Problem in VLSI; 1.4 The Long-Haul Optical Communication Link; 1.4.1 Basic Link and Components; 1.4.2 Materials and Integration; 1.5 Data Network; 1.6 Conclusions; 1.7 Scope of the Book; References; 2 Basic Properties of Silicon; 2.1 Introduction; 2.2 Band Structure; 2.2.1 E-k Diagram: General Considerations; 2.2.2 Band Properties near Extremas; 2.2.3 Refined Theory for Band Structures
  • 2.2.4 Temperature- and Pressure-Dependent Band Gap 2.2.5 Band Structure in Ge; 2.3 Density-of-States Function; 2.4 Impurities; 2.4.1 Donors and Acceptors; 2.4.2 Isoelectronic Impurities; 2.5 Alloys of Silicon and Other Group IV Elements; 2.5.1 Different Alloy Systems; 2.5.2 Lattice Constants; 2.5.3 Band Structures of Unstrained Alloys; 2.6 Heterojunctions and Band Lineup; 2.7 Si-Based Heterostructures; 2.7.1 Lattice-Mismatched Heteroepitaxy; 2.7.2 Pseudomorphic Growth and Critical Thickness; 2.7.3 Elasticity Theory: Stress and Strain; 2.7.4 Expressions for Critical Thickness
  • 2.7.5 Strain Symmetric Structures and Virtual Substrates 2.7.6 Band Offsets and Band Lineup; 2.7.7 Electronic Properties of SiGe/Si Heterostructures; 2.8 Direct Gap: Ge/SiGeSn Heterojunctions; 2.8.1 Structures; 2.8.2 Band Edges and Band Lineup; Problems; References; Suggested Readings; 3 Quantum Structures; 3.1 Introduction; 3.2 Quantum Wells; 3.2.1 Condition for Quantum Confinement; 3.2.2 A Representative Structure; 3.2.3 Simplified Energy Levels; 3.2.4 Density-of-States in Two Dimensions; 3.2.5 Finite Quantum Well; 3.2.6 Refined Methods; 3.2.7 Different Band Alignments
  • 3.3 Quantum Wires and Dots 3.3.1 Subbands and DOS in Quantum Wires; 3.3.2 Quantum Dots; 3.4 Superlattices; 3.5 Si-Based Quantum Structures; 3.5.1 Electron Subband Structure; 3.5.2 Hole Subbands; 3.5.3 Quantum Wells and Barriers; 3.6 Effect of Electric Field; Problems; References; Suggested Readings; 4 Optical Processes; 4.1 Introduction; 4.2 Optical Constants; 4.3 Basic Concepts; 4.3.1 Absorption and Emission; 4.3.2 Absorption and Emission Rates; 4.4 Absorption Processes in Semiconductors; 4.5 Fundamental Absorption in Direct Gap; 4.5.1 Conservation Laws
  • 4.5.2 Calculation of Absorption Coefficient 4.6 Fundamental Absorption in Indirect Gap; 4.6.1 Theory of Absorption; 4.6.2 Absorption Spectra in Si; 4.6.3 Absorption Spectra in Ge; 4.7 Absorption and Gain; 4.8 Intervalence Band Absorption; 4.9 Free-carrier Absorption; 4.10 Recombination and Luminescence; 4.10.1 Luminescence Lifetime; 4.10.2 Carrier Lifetime: Dependence on Carrier Density; 4.10.3 Absorption and Recombination; 4.10.4 Microscopic Theory of Recombination; 4.11 Nonradiative Recombination; 4.11.1 Recombination via Traps; 4.11.2 Auger Recombination; 4.11.3 Surface Recombination
  • 4.11.4 Recombination of Complexes