Knowledge discovery from data streams

Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing dat...

Descripción completa

Detalles Bibliográficos
Otros Autores: Gama, Joao., author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton : Chapman & Hall/CRC 2010.
Edición:1st edition
Colección:Chapman & Hall/CRC data mining and knowledge discovery series.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009629059306719
Tabla de Contenidos:
  • Front cover; Contents; List of Tables; List of Figures; List of Algorithms; Foreword; Acknowledgments; Chapter 1: Knowledge Discovery from Data Streams; Chapter 2: Introduction to Data Streams; Chapter 3: Change Detection; Chapter 4: Maintaining Histograms from Data Streams; Chapter 5: Evaluating Streaming Algorithms; Chapter 6: Clustering from Data Streams; Chapter 7: Frequent Pattern Mining; Chapter 8: Decision Trees from Data Streams; Chapter 9: Novelty Detection in Data Streams; Chapter 10: Ensembles of Classiers; Chapter 11: Time Series Data Streams; Chapter 12: Ubiquitous Data Mining
  • Chapter 13: Final CommentsAppendix A; Bibliography; Back cover